• Title/Summary/Keyword: intestinal barrier

Search Result 103, Processing Time 0.028 seconds

The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase-Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway

  • Yu, Changsong;Jia, Gang;Deng, Qiuhong;Zhao, Hua;Chen, Xiaoling;Liu, Guangmang;Wang, Kangning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.731-738
    • /
    • 2016
  • Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that $100{\mu}g/mL$ LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ's expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

The Effect of Seasoning on the Intestinal Absorption -Absorption by Passive Transport and the Effect of Red Pepper- (조미료가 창자 운동과 흡수기능에 미치는 영향 -소장의 피동적 흡수에 대한 고추의 영향-)

  • Shin, Dong-Hoon;Kim, Joong-Soo;Koh, Jae-Pyong;Ahn, Seung-Woon
    • The Korean Journal of Physiology
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1973
  • Numerous factors concern with the absorption of substances through the membrane of the gastrointestinal tract. To simplify the experimental condition, present work has been restricted to observe the disappearance rate of substance from the intestinal loop which was made in the jejunum, 70 cm apart from the pylorus of the adult rabbit. The purpose of the study is to clarify the absorption of urea through the jejunal wall is solely attributable to the concentration difference between the luminal fluid and plasma, and to observe the effect of adding red pepper upon the rate of absorption. The rabbits were anesthetized with nembutal, 35mg/kg I.V. Jejunal loop was made by ligating at 2 spots, 70 cm and 80cm apart from the pylorus. After rinsing with normal saline solution through the polyethylene tubing inserted from the end of the loop, 8 ml of test solution was placed through the same tubing. The test solution contained 200 mg% of urea and 150mg% of polyethylene glycol(M.W. 4,000) in normal saline solution. Right after placing the test solution the first specimen was taken through the tubing, and successive samplings were performed at 5, 10, 20, and 30 minutes. Logarithm of the difference of urea concentration between the luminal fluid and plasma was plotted against time elapsed after the onset of the experiment. If straight line is revealed, it would verify the nature of transport mechanism as diffusion, obeying the Fick's principle. The concentration of polyethylene glycol (PEG) was also measured in order to examine the change in the volume. PEG was used as the marker substance because it is not absorbable in the intestinal tract. Consequently the concentration of PEG relates inversely to the volume of the loop. Instantaneous concentration of urea in the loop times the volume will give the amount of urea remaining in the luminal fluid. The change in the amount of any substance is directly relate to the volume of the compartment and differs from the change in the concentration which is independent of the volume. After completion of the experiment without red pepper, it was added in the test solution and was centrifuged after thorough mixing. Supernatant of the mixture was placed in the loop and similar sampling were performed with the same time intervals that of previous run in order to observe the effects of the red pepper on the passive transport of the water soluble small substance, urea. The results obtained were as follows: 1. Logarithm of the concentration difference of urea between the luminal fluid and plasma was diminished exponentially as time elapsed. The decay constant in the experiment without red pepper was 0.0563/min. By adding red pepper in the test solution as much as the concentration rose to 4,000 mg% and 8,000 mg%, the decay constants were lowered to 0.0493/min and to 0.0506/min, respectively. The time interval by which the concentration difference dropped to one half of the initial value was prolonged. Without red pepper the half concentration time was 13.30 minutes, and by adding extract of red pepper, 15.31 minutes and 15.71 minutes were revealed. 2. The profile of the diminishing rate of tile amount of urea was quite different from that of the concentration because of the change in the volume of the loop during the observed period. 3. By adding the extract of red pepper, it slowed down the rate of absorption of urea in the intestinal loop, suggesting an increase in the diffusional barrier. 4. Larger dosage of red pepper brought an increase in the secretion of intestinal fluid with concomitant expansion of the luminal volume, and the retardation of the absorption of urea was noticed. This effect was largely dependent on the sensitivity of the individual animal to the red pepper, extract. The amount of urea remained after 10 minutes interval was 55.5% of the initial amount in the experiment without red pepper. On the other hand it was not consistent after administration of red pepper, showing 50.6% and 66.5% of the initial figures by adding 400 mg and 800 mg of red pepper in the test solution, respectively. It was postulated that symptom of diarrhea often encountered by taking a hot (red pepper) food might be attributable to the increase of secretion and the retardation of absorption in the intestinal tract.

  • PDF

Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats

  • Dun, Yaoyan;Liu, Min;Chen, Jing;Peng, Danli;Zhao, Haixia;Zhou, Zhiyong;Wang, Ting;Liu, Chaoqi;Guo, Yuhui;Zhang, Changcheng;Yuan, Ding
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2018
  • Background: Saponins from Panax japonicus (SPJ) are the most abundant and main active components of P. japonicus, which replaces ginseng roots in treatment for many kinds of diseases in the minority ethnic group in China. Our previous studies have demonstrated that SPJ has the effects of anti-inflammation through the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-${\kappa}B$) signaling pathways. The present study was designed to investigate whether SPJ can modulate intestinal tight junction barrier in aging rats and further to explore the potential mechanism. Methods: Aging rats had been treated with different doses (10 mg/kg, 30 mg/kg, and 60 mg/kg) of SPJ for 6 mo since they were 18 mo old. After the rats were euthanized, the colonic samples were harvested. Levels of tight junctions (claudin-1 and occludin) were determined by immunohistochemical staining. Levels of proinflammatory cytokines (interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$) were examined by Western blot. NF-${\kappa}B$ and phosphorylation of MAPK signaling pathways were also determined by Western blot. Results: We found that SPJ increased the expression of the tight junction proteins claudin-1 and occludin in the colon of aging rats. Treatment with SPJ decreased the levels of interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$, reduced the phosphorylation of three MAPK isoforms, and inhibited the expression of NF-${\kappa}B$ in the colon of aging rats. Conclusion: The studies demonstrated that SPJ modulates the damage of intestinal epithelial tight junction in aging rats, inhibits inflammation, and downregulates the phosphorylation of the MAPK and $NF-{\kappa}B$ signaling pathways.

Lactic Acid Bacteria Improves Peyer's Patch Cell-Mediated Immunoglobulin A and Tight-Junction Expression in a Destructed Gut Microbial Environment

  • Kim, Sung Hwan;Jeung, Woonhee;Choi, Il-Dong;Jeong, Ji-Woong;Lee, Dong Eun;Huh, Chul-Sung;Kim, Geun-Bae;Hong, Seong Soo;Shim, Jae-Jung;Lee, Jung Lyoul;Sim, Jae-Hun;Ahn, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1035-1045
    • /
    • 2016
  • To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use.

Development of adjuvant for effective oral vaccine application (경구백신의 효율적인 적용을 위한 면역 보조제 개발)

  • Kim, Sae-Hae;Seo, Ki-Weon;Kim, Ju;Jang, Yong-Suk
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.283-291
    • /
    • 2010
  • Vaccine is one of the best known and most successful applications of immunological theory to human health and it protects human life through inducing the immune response in systemic compartment. However, when we consider the fact that mucosal epithelium is exposed to diverse foreign materials including viruses, bacteria, and food antigens and protects body from entry of unwanted materials using layer of tightly joined epithelial cells, establishing the immunological barrier on the lining of mucosal surfaces is believed to be an effective strategy to protect body from unwanted antigens. Unfortunately, however, oral mucosal site, which is considered as the best target to induce mucosal immune response due to application convenience, is prone to induce immune tolerance rather than immune stimulation. Since intestinal epithelium is tightly organized, a prerequisite for successful mucosal vaccination is delivery of antigen to mucosal immune induction site including a complex system of highly specialized cells such as M cells. Consequently, development of efficient mucosal adjuvant capable of introducing antigens to mucosal immune induction site and overcome oral tolerance is an important subject in oral vaccine development. In this review, various approaches on the development of oral mucosal adjuvants being suggested for effective oral mucosal immune induction.

Classification, Structure, and Bioactive Functions of Oligosaccharides in Milk

  • Mijan, Mohammad Al;Lee, Yun-Kyung;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.631-640
    • /
    • 2011
  • Milk oligosaccharides are the complex mixture of six monosaccharides namely, D-glucose, D-galactose, N-acetyl-glucosamine, N-acetyl-galactosamine, L-fucose, and N-acetyl-neuraminic acid. The mixture is categorized as neutral and acidic classes. Previously, 25 oligosaccharides in bovine milk and 115 oligosaccharides in human milk have been characterized. Because human intestine lacks the enzyme to hydrolyze the oligosaccharide structures, these substances can reach the colon without degradation and are known to have many health beneficial functions. It has been shown that this fraction of carbohydrate can increase the bifidobacterial population in the intestine and colon, resulting in a significant reduction of pathogenic bacteria. The role of milk oligosaccharides as a barrier against pathogens binding to the cell surface has recently been demonstrated. Milk oligosaccharides have the potential to produce immuno-modulation effects. It is also well known that oligosaccharides in milk have a significant influence on intestinal mineral absorption and in the formation of the brain and central nervous system. Due to its structural resemblance, bovine milk is considered to be the most potential source of oligosaccharides to produce the same effect of oligosaccharides present in human milk. This review describes the characteristics and potential health benefits of milk oligosaccharides as well as the prospects of oligosaccharides in bovine milk for use in functional foods.

Recent Advance in Very Early Onset Inflammatory Bowel Disease

  • Shim, Jung Ok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • Recent studies on pediatric inflammatory bowel disease (IBD) have revealed that early-onset IBD has distinct phenotypic differences compared with adult-onset IBD. In particular, very early-onset IBD (VEO-IBD) differs in many aspects, including the disease type, location of the lesions, disease behavior, and genetically attributable risks. Several genetic defects that disturb intestinal epithelial barrier function or affect immune function have been noted in these patients from the young age groups. In incidence of pediatric IBD in Korea has been increasing since the early 2000s. Neonatal or infantile-onset IBD develops in less than 1% of pediatric patients. Children with "neonatal IBD" or "infantile-onset IBD" have higher rates of affected first-degree relatives, severe disease course, and a high rate of resistance to immunosuppressive treatment. The suspicion of a monogenic cause of VEO-IBD was first confirmed by the discovery of mutations in the genes encoding the interleukin 10 (IL-10) receptors that cause impaired IL-10 signaling. Patients with such mutations typically presented with perianal fistulae, shows a poor response to medical management, and require early surgical interventions in the first year of life. To date, 60 monogenic defects have been identified in children with IBD-like phenotypes. The majority of monogenic defects presents before 6 years of age, and many present before 1 year of age. Next generation sequencing could become an important diagnostic tool in children with suspected genetic defects especially in children with VEO-IBD with severe disease phenotypes. VEO-IBD is a phenotypically and genetically distinct disease entity from adult-onset or older pediatric IBD.

Study of The Correlation of Lung-Large intestine-Skin by Ulcerative Colitis-Induced 3 Weeks Old Mice (3주된 생쥐에서 궤양성 대장염 유발을 통한 폐-대장-피부의 상관관계 연구)

  • Ahn, Sang Hyun;Kim, Kibong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.103-111
    • /
    • 2019
  • Objectives The purpose of this study is to understand the correlations between lung, large intestine, and skin of 3-week-old mice in which ulcerative colitis was induced, up on administration of Coptidis rhizome and Glycyrrhiza uralensis mixed extract. Methods Mice were divided into 4 groups as follows; no treatment group (Ctrl group), ulcerative colitis-induced mice group (UE group), ulcerative colitis-induced mice group after administering Pentasa (PT group), ulcerative colitis-induced mice group after administering Coptidis rhizoma and Glycyrrhiza uralensis mixed extract (CGT group). Mice were induced ulcerative colitis by Dextran sulfate sodium (DSS). After 5 days of administration, We obvserved anti-inflammatory effect, alveolar formation, and skin barrier control in the colon mucosa. Results The CGT group was observed arrangement of normal intestinal cells, Infiltration of less inflammatory cells. The CGT significantly decreased positive rseponse of $TNF-{\alpha}$, p-IkB, Caspase 3 in large intestine, and significantly increased positive rseponse of EGF, IGF, catalase, Filaggrin, involucrin, loricrin. Conclusions The results of this study show the correlation of Lung-Large intestine-Skin by administering Coptidis rhizoma and Glycyrrhiza uralensis mixed extract to ulcerative colitis-induced mice.

Latilactobacillus sakei WIKIM31 Decelerates Weight Gain in High-Fat Diet-Induced Obese Mice by Modulating Lipid Metabolism and Suppressing Inflammation

  • Park, Sung-Soo;Lim, Seul Ki;Lee, Jieun;Park, Hyo Kyeong;Kwon, Min-Sung;Yun, Misun;Kim, Namhee;Oh, Young Joon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1568-1575
    • /
    • 2021
  • Obesity and related metabolic diseases are major problems worldwide. Some probiotics are currently considered potential therapeutic strategies for obesity. We aimed to investigate the anti-obesity efficacy of Latilactobacillus sakei WIKIM31 in obese mice induced by a high fat diet. The administration of a high-fat diet with L. sakei WIKIM31 reduced body weight gain, epididymal fat mass, triglyceride and total cholesterol levels in the blood, and remarkably decreased the expression of lipogenesis-related genes in the epididymal adipose tissue and liver. Interestingly, intake of L. sakei WIKIM31 improved gut barrier function by increasing the gene expression of tight junction proteins and suppressing the inflammatory responses. Additionally, L. sakei WIKIM31 enhanced the production of short-chain fatty acids, such as butyrate and propionate, in the intestinal tract. These results showed that L. sakei WIKIM31 can be used as a potential therapeutic probiotic for obesity.

Serotonin and Energy Metabolism (세로토닌과 에너지 대사)

  • Kyoung-Kon Kim
    • Archives of Obesity and Metabolism
    • /
    • v.3 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Serotonin, a biogenic amine widely found in many organisms, functions as both a neurotransmitter and hormone. Although serotonin is involved in various physiological processes, this study aimed to review its role in energy metabolism. Given that serotonin cannot cross the blood-brain barrier and is synthesized by two different isoforms of tryptophan hydroxylase in the central nervous system (CNS) and peripheral tissues, it is reasonable to assume that serotonin in the CNS and peripheral tissues functions independently. Recent studies have demonstrated how serotonin influences energy metabolism in metabolic target organs such as the intestines, liver, pancreas, and adipose tissue. In summary, serotonin in the CNS induces satiety and appetite suppression, stimulates thermogenesis, and reduces body weight. Conversely, serotonin in the periphery increases intestinal motility, stimulates gluconeogenesis in the liver, suppresses glucose uptake by hepatocytes, promotes fat uptake by liver cells, stimulates insulin secretion while suppressing glucagon secretion in the pancreatic islets, promotes lipogenesis in white adipose tissue, inhibits lipolysis and browning of white adipose tissue, and suppresses thermogenesis in brown adipose tissue, thereby storing energy and increasing body weight. However, considering that most experimental results were obtained using mice and conducted under specific nutritional conditions, such as high-fat diets, whether serotonin acts in the same way in humans, whether it will act similarly in individuals with normal versus obese weights, and whether its effects vary depending on the type of food consumed, remain unknown.