• Title/Summary/Keyword: intestinal barrier

Search Result 105, Processing Time 0.028 seconds

Effects of stocking density and dietary vitamin C on performance, meat quality, intestinal permeability, and stress indicators in broiler chickens

  • Yu, Dong Gwon;Namgung, Nyun;Kim, Jong Hyuk;Won, Seung Yeon;Choi, Won Jun;Kil, Dong Yong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.815-826
    • /
    • 2021
  • The objective of the current study was to investigate the effects of stocking density (SD) and dietary supplementation of vitamin C on growth performance, meat quality, intestinal permeability, and stress indicators in broiler chickens. The study was conducted using a completely randomized design with a 2 × 2 factorial arrangement consisting of 2 different SD and 2 supplemental levels of dietary vitamin C. A total of 1,368 Ross 308 broiler chickens of 21 days of age with similar body weights (BW) were randomly allotted to 1 of 4 treatments with 6 replicates each. Different numbers of birds per identical floor pen (2.0 m × 2.4 m) were used to create 2 different SD levels of low SD (9 birds/m2) and high SD (18 birds/m2). The basal diet was formulated with no supplemental vitamin C to meet or exceed nutrient recommendations of the Ross 308 manual. The other diet was prepared by supplementing 200 mg/kg vitamin C in the basal diet. The study lasted for 14 days. At the end of the study, 3 male birds per replicate were selected to analyze meat quality, intestinal permeability, and stress indicators such as blood heterophil:lymphocyte (H:L) and feather corticosterone (CORT) concentrations. Results indicated that there were no interactions between different SD and dietary supplementation of vitamin C for all measurements. For the main effects of SD, birds raised at high SD had less (p < 0.01) BW, BW gain, and feed intake with increasing stress responses including greater blood H:L and feather CORT concentrations (p < 0.01) than those raised at low SD. Transepithelial electrical resistance in the jejunal mucosa was decreased (p < 0.05) at high SD, indicating an increase in intestinal permeability. However, the main effects of dietary supplementation of 200 mg/kg vitamin C were insignificant for all measurements. In conclusion, high SD of broiler chickens impairs growth performance and intestinal barrier function with increasing stress responses. However, dietary supplementation of vitamin C may have little beneficial effects on broiler chickens raised at the high SD condition used in the present study.

The Combination of Bacillus natto JLCC513 and Ginseng Soluble Dietary Fiber Attenuates Ulcerative Colitis by Modulating the LPS/TLR4/NF-κB Pathway and Gut Microbiota

  • Mingyue Ma;Yueqiao Li;Yuguang He;Da Li;Honghong Niu;Mubai Sun;Xinyu Miao;Ying Su;Hua Zhang;Mei Hua;Jinghui Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1287-1298
    • /
    • 2024
  • Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is currently difficult to treat effectively. Both Bacillus natto (BN) and ginseng-soluble dietary fiber (GSDF) are anti-inflammatory and helps sustain the intestinal barrier. In this study, the protective effects and mechanism of the combination of B. natto JLCC513 and ginseng-soluble dietary fiber (BG) in DSS-induced UC mice were investigated. Intervention with BG worked better than taking BN or GSDF separately, as evidenced by improved disease activity index, colon length, and colon injury and significantly reduced the levels of oxidative and inflammatory factors (LPS, ILs, and TNF-α) in UC mice. Further mechanistic study revealed that BG protected the intestinal barrier integrity by maintaining the tight junction proteins (Occludin and Claudin1) and inhibited the LPS/TLR4/NF-κB pathway in UC mice. In addition, BG increased the abundance of beneficial bacteria such as Bacteroides and Turicibacter and reduced the abundance of harmful bacteria such as Allobaculum in the gut microbiota of UC mice. BG also significantly upregulated genes related to linoleic acid metabolism in the gut microbiota. These BG-induced changes in the gut microbiota of mice with UC were significantly correlated with changes in pathological indices. In conclusion, this study demonstrated that BG exerts protective effect against UC by regulating the LPS/TLR4/NF-κB pathway and the structure and metabolic function of gut microbiota. Thus, BG can be potentially used in intestinal health foods to treat UC.

Effect of Glucagon-like Peptide 2 on Tight Junction in Jejunal Epithelium of Weaned Pigs though MAPK Signaling Pathway

  • Yu, Changsong;Jia, Gang;Jiang, Yi;Deng, Qiuhong;Chen, Zhengli;Xu, Zhiwen;Chen, Xiaolin;Wang, Kangning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.733-742
    • /
    • 2014
  • The glucagon-like peptide 2 (GLP-2) that is expressed in intestine epithelial cells of mammals, is important for intestinal barrier function and regulation of tight junction (TJ) proteins. However, there is little known about the intracellular mechanisms of GLP-2 in the regulation of TJ proteins in piglets' intestinal epithelial cells. The purpose of this study is to test the hypothesis that GLP-2 regulates the expressions of TJ proteins in the mitogen-activated protein kinase (MAPK) signaling pathway in piglets' intestinal epithelial cells. The jejunal tissues were cultured in a Dulbecco's modified Eagle's medium/high glucose medium containing supplemental 0 to 100 nmol/L GLP-2. At 72 h after the treatment with the appropriate concentrations of GLP-2, the mRNA and protein expressions of zonula occludens-1 (ZO-1), occludin and claudin-1 were increased (p<0.05). U0126, an MAPK kinase inhibitor, prevented the mRNA and protein expressions of ZO-1, occludin, claudin-1 increase induced by GLP-2 (p<0.05). In conclusion, these results indicated that GLP-2 could improve the expression of TJ proteins in weaned pigs' jejunal epithelium, and the underlying mechanism may due to the MAPK signaling pathway.

Rat Peripheral Nerve Regeneration Using Nerve Guidance Channel by Porcine Small Intestinal Submucosa

  • Yi, Jin-Seok;Lee, Hyung-Jin;Lee, Hong-Jae;Lee, Il-Woo;Yang, Ji-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Objective : In order to develop a novel nerve guidance channel using porcine small intestinal submucosa (SIS) for nerve regeneration, we investigated the possibility of SIS, a tissue consisting of acellular collagen material without cellular immunogenicity, and containing many kinds of growth factors, as a natural material with a new bioactive functionality. Methods : Left sciatic nerves were cut 5 mm in length, in 14 Sprague-Dawley rats. Grafts between the cut nerve ends were performed with a silicone tube (Silicon group, n=7) and rolled porcine SIS (SIS group, n=7). All rats underwent a motor function test and an electromyography (EMG) study on 4 and 10 weeks after grafting. After last EMG studies, the grafts, including proximal and distal nerve segments, were retrieved for histological analysis. Results : Foot ulcers, due to hypesthesia, were fewer in SIS group than in Silicon group. The run time tests for motor function study were 2.67 seconds in Silicon group and 5.92 seconds in SIS group. Rats in SIS group showed a better EMG response for distal motor latency and amplitude than in Silicon group. Histologically, all grafts contained some axons and myelination. However, the number of axons and the degree of myelination were significantly higher in SIS group than Silicon group. Conclusion : These results show that the porcine SIS was an excellent option as a natural biomaterial for peripheral nerve regeneration since this material contains many kinds of nerve growth factors. Furthermore, it could be used as a biocompatible barrier covering neural tissue.

Effect of Agitation on the in vitro Permeability of Xenobiotics across Caco-2 Cell Monolayers (Caco-2 세포 단층막 투과 실험시 교반이 약물의 투과계수에 미치는 염향)

  • Hong, Soon-Sun;Yoo, Ho-Jung;Li, Hong;Chung, Suk-Jae;Kim, Dae-Duk;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.111-116
    • /
    • 2005
  • The unstirred water layer (UWL), which has been known to exist in the boundary of the intestinal lumen and intestinal wall, often behaves as an absorption barrier especially for lipophilic drugs. The intestinal absorption of drugs is often characterized using Caco-2 cell monolayers grown on Transwell polycarbonate membranes. The permeability $(P_{app})$ of drugs across the cell monolayer might be influenced by the agitation of the donor compartment, since the width of UWL on the surface of the cell monolayer would be reduced by the agitation. In this study, the effect of agitation of the donor compartment with 60 rpm on the permeability was measured for 12 drugs with a wide range of lipophilicity and permeability. The $P_{app}$ of mannitol, tributylmethyl ammonium, cimetidine, ranitidine, hydrocortisone, benzylpenicillin and loxoprofen was not influenced by the agitation, while the $P_{app}$ of theophylline, propranolol, YH439, phenylpropanolamine and testosterone was increased by the agitation. There was a significant correlation between the increase of $P_{app}$ by agitation and the lipophilicity for the compounds having $P_{app}>2{\times}10^{-5}$ cm/sec. No correlation was observed for the difference in $P_{app}$ by agitation and the molecular weight, or lipophilicity of the drugs. Therefore, the agitation rate of the donor compartment in the Caco-2 cell monolayer study should be carefully controlled in order to estimate $P_{app}$ reproducibly especially for lipophilic drugs.

Clinical efficacy and mechanism of probiotics in allergic diseases

  • Kim, Ha-Jung;Kim, Hyung Young;Lee, So-Yeon;Seo, Ju-Hee;Lee, Eun;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.9
    • /
    • pp.369-376
    • /
    • 2013
  • A complex interplay between genetic and environmental factors partially contributes to the development of allergic diseases by affecting development during prenatal and early life. To explain the dramatic increase in the prevalence of allergic diseases, the hygiene hypothesis proposed that early exposure to infection prevented allergic diseases. The hygiene hypothesis has changed to the microbial hypothesis, in which exposure to microbes is closely linked to the development of the early immune system and allergic diseases. The intestinal flora may contribute to allergic disease through its substantial effect on mucosal immunity. Based on findings that exposure to microbial flora early in life can change the Th1/Th2 balance, thus favoring a Th1 cell response, probiotics may be beneficial in preventing allergic diseases. However, evidence from clinical and basic research to prove the efficacy of probiotics in preventing allergy is lacking. To date, studies have yielded inconsistent findings on the usefulness of probiotics in allergic diseases. It is difficult to demonstrate an exact effect of probiotics on asthma, allergic rhinitis, and food allergy because of study limitations, such as different first supplementation period, duration, different strains, short follow-up period, and host factors. However, many studies have demonstrated a significant clinical improvement in atopic dermatitis with the use of probiotics. An accurate understanding of the development of human immunity, intestinal barrier function, intestinal microbiota, and systemic immunity is required to comprehend the effects of probiotics on allergic diseases.

Effect of Supplementation of Zinc, Glutamine, Fiber, and Prebiotics in Presumed Healthy Indonesian Children Aged 1-3 Years

  • Kadim, Muzal;Hegar, Badriul;Bardosono, Saptawati;Timan, Ina S;Gunardi, Hartono;Prasetyo, Dwi;Firmansyah, Agus;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.4
    • /
    • pp.388-396
    • /
    • 2020
  • Purpose: Impaired intestinal mucosal integrity may affect the gastrointestinal function, especially in relation to nutrition, absorption, and barrier function. The purpose of this study was to measure the prevalence of impaired intestinal mucosal integrity in presumed healthy children aged 1-3 years and assess the effects of zinc, glutamine, fiber, and prebiotic supplementation in them. Methods: A cross-sectional study was conducted in 200 children aged 1-3 years in Pasar Minggu, South Jakarta, Indonesia. A randomized double-blind parallel group method clinical trial was then performed to assess the effects of zinc, glutamine, fiber, and prebiotic supplementation. Results: Elevated calprotectin was found in 91/200 subjects (45.5%) at the onset of the study. After 10 months, 144 subjects completed the study: 72 subjects received the trial formula, whereas the other 72 received the standard formula. A transitory decrease in fecal calprotectin (FC) was observed after 6 months in the subgroup with normal FC levels, who were fed the test formula (p=0.012). Conclusion: The prevalence of impaired intestinal mucosal integrity in this group of Indonesian children aged 1-3 years was high. Supplementation with zinc, glutamine, fiber, and prebiotics during 6 months reduced FC only in those who had low levels at baseline but not in those with impaired integrity.

Flagellin-Stimulated Production of Interferon-β Promotes Anti-Flagellin IgG2c and IgA Responses

  • Kang, Wondae;Park, Areum;Huh, Ji-Won;You, Gihoon;Jung, Da-Jung;Song, Manki;Lee, Heung Kyu;Kim, You-Me
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.251-263
    • /
    • 2020
  • Flagellin, a major structural protein of the flagellum found in all motile bacteria, activates the TLR5- or NLRC4 inflammasome-dependent signaling pathway to induce innate immune responses. Flagellin can also serve as a specific antigen for the adaptive immune system and stimulate anti-flagellin antibody responses. Failure to recognize commensal-derived flagellin in TLR5-deficient mice leads to the reduction in anti-flagellin IgA antibodies at steady state and causes microbial dysbiosis and mucosal barrier breach by flagellated bacteria to promote chronic intestinal inflammation. Despite the important role of anti-flagellin antibodies in maintaining the intestinal homeostasis, regulatory mechanisms underlying the flagellin-specific antibody responses are not well understood. In this study, we show that flagellin induces interferon-β (IFN-β) production and subsequently activates type I IFN receptor signaling in a TLR5- and MyD88-dependent manner in vitro and in vivo. Internalization of TLR5 from the plasma membrane to the acidic environment of endolysosomes was required for the production of IFN-β, but not for other pro-inflammatory cytokines. In addition, we found that anti-flagellin IgG2c and IgA responses were severely impaired in interferon-alpha receptor 1 (IFNAR1)-deficient mice, suggesting that IFN-β produced by the flagellin stimulation regulates anti-flagellin antibody class switching. Our findings shed a new light on the regulation of flagellin-mediated immune activation and may help find new strategies to promote the intestinal health and develop mucosal vaccines.

6-Shogaol, an Active Ingredient of Ginger, Improves Intestinal and Brain Abnormalities in Proteus Mirabilis-Induced Parkinson's Disease Mouse Model

  • Eugene Huh;Jin Gyu Choi;Yujin Choi;In Gyoung Ju;Dongjin Noh;Dong-yun Shin;Dong Hyun Kim;Hi-Joon Park;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2023
  • Parkinson's disease (PD) which has various pathological mechanisms, recently, it is attracting attention to the mechanism via microbiome-gut-brain axis. 6-Shogaol, a representative compound of ginger, have been known for improving PD phenotypes by reducing neuroinflammatory responses. In the present study, we investigated whether 6-shogaol and ginger attenuate degeneration induced by Proteus mirabilis (P. mirabilis) on the intestine and brain, simultaneously. C57BL/6J mice received P. mirabilis for 5 days. Ginger (300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 22 days including the period of P. mirabilis treatment. Results showed that 6-shogaol and ginger improved motor dysfunction and dopaminergic neuronal death induced by P. mirabilis treatment. In addition, they suppressed P. mirabilis-induced intestinal barrier disruption, pro-inflammatory signals such as toll-like receptor and TNF-α, and intestinal α-synuclein aggregation. Moreover, ginger and 6-shogaol significantly inhibited neuroinflammation and α-synuclein in the brain. Taken together, 6-shogaol and ginger have the potential to ameliorate PD-like motor behavior and degeneration of dopaminergic neurons induced by P. mirabilis in mice. Here, these findings are meaningful in that they provide the first experimental evidence that 6-shogaol might attenuate PD via regulating gut-brain axis.

Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects

  • Muhammad Saeed;Zoya Afzal;Fatima Afzal;Rifat Ullah Khan;Shaaban S. Elnesr;Mahmoud Alagawany;Huayou Chen
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1111-1127
    • /
    • 2023
  • Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.