• Title/Summary/Keyword: interval load

Search Result 282, Processing Time 0.029 seconds

Analysis of Stress Distribution of a Curved Beam Using Photoelasticity (광탄성법을 이용한 곡선보 평판의 응력분포 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Soo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.200-206
    • /
    • 1999
  • This paper describes the stress analysis of a curved beam by using photoelasticity. In order to measure accurate isochromatic fringe orders at certain locations. fringes are doubled and sharpened by digital image processing. After fringe multiplication and sharpening. fringe orders can be read as a quarter order interval (N=0, 1/4, 2/4, 3/4,...). The results obtained from photoelastic experiment are compared with those calculated by using theory. Two results are agreed well even though there are some scatter bands with maximum 8 percent for the results of photoelastic measurements and theoretical calculation. Difference may be occurred due to the slight misalignment of the direction to which axial load is applied in photoelastic experiment. It is confirmed that accurate measurement of stress distribution can be possible by using the techniques of fringe multiplication and sharpening in photoelasticity.

  • PDF

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Relationship between the time to positivity of blood culture and mortality according to the site of infection in sepsis

  • Um, Young Woo;Lee, Jae Hyuk;Jo, You Hwan;Kim, Joonghee;Kim, Yu Jin;Kwon, Hyuksool
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.5
    • /
    • pp.474-484
    • /
    • 2018
  • Objective: The time to positivity (TTP) of blood culture reflects bacterial load and has been reported to be associated with outcome in bloodstream infections. This study was performed to evaluate the relationship between the TTP of blood culture and the mortality rates associated with sepsis and septic shock according to the site of infection. Methods: We performed a retrospective cohort study on patients with sepsis and septic shock. The rates of blood culture positivity and mortality as well as the relationship between the TTP and 28-day mortality rate were compared among patients with different sites of infection, such as the lungs, abdomen, urogenital tract, and other sites. Results: A total of 2,668 patients were included, and the overall mortality rate was 21.6%. The rates of blood culture positivity and mortality were different among the different infection sites. There was no relationship between the TTP and mortality rates of total, lung, and urogenital infections. Patients with abdominal infections showed a negative correlation between the TTP and 28-day mortality rate. In patients with abdominal infections, a TTP<20 hours was independently associated with 28-day mortality compared with patients with negative blood culture (hazard ratio, 1.73; 95% confidence interval, 1.16-2.58). However, there was no difference in mortality rates of patients with a $TTP{\geq}20$ hours and a negative blood culture. Conclusion: The shorter TTP in patients with abdominal infections in sepsis and septic shock was associated with a higher 28-day mortality rate.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

The effect of in-situ stress parameters and metamorphism on the geomechanical and mineralogical behavior of tunnel rocks

  • Kadir Karaman
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • Determination of jointed rock mass properties plays a significant role in the design and construction of underground structures such as tunneling and mining. Rock mass classification systems such as Rock Mass Rating (RMR), Rock Mass Index (RMi), Rock Mass Quality (Q), and deformation modulus (Em) are determined from the jointed rock masses. However, parameters of jointed rock masses can be affected by the tunnel depth below the surface due to the effect of the in situ stresses. In addition, the geomechanical properties of rocks change due to the effect of metamorphism. Therefore, the main objective of this study is to apply correlation analysis to investigate the relationships between rock mass properties and some parameters related to the depth of the tunnel studied. For this purpose, the field work consisted of determining rock mass parameters in a tunnel alignment (~7.1 km) at varying depths from 21 m to 431 m below ground surface. At the same excavation depths, thirty-seven rock types were also sampled and tested in the laboratory. Correlations were made between vertical stress and depth, horizontal/vertical stress ratio (k) and depth, k and Em, k and RMi, k and point load index (PLI), k and Brazilian tensile strength (BTS), Em and uniaxial compressive strength (UCS), UCS and PLI, UCS and BTS. Relationships were significant (significance level=0.000) at the confidence interval of 95% (r = 0.77-0.88) between the data pairs for the rocks taken from depths greater than 166 m where the ratio of horizontal to vertical stress is between 0.6 and 1.2. The in-situ stress parameters affected rock mass properties as well as metamorphism which affected the geomechanical properties of rock materials by affecting the behavior of minerals and textures within rocks. This study revealed that in-situ stress parameters and metamorphism should be reviewed when tunnel studies are carried out.

Implantation of a Newly Designed Supratarsal Gold Weight versus the Traditional Pretarsal Model for the Correction of Long-standing Paralytic Lagophthalmos: A Retrospective Cohort Study

  • Natthiya Lailaksiri;Pawarit Wanichsetakul;Preamjit Saonanon
    • Archives of Plastic Surgery
    • /
    • v.51 no.2
    • /
    • pp.163-168
    • /
    • 2024
  • Background The study determined to compare the clinical outcomes of traditional gold weight implantation for the correction of paralytic lagophthalmos with those of a newly designed model. Methods In this retrospective cohort study, we enrolled 30 patients (76% females; average age 60.8 ± 12 years) with facial palsy who underwent implantation of either the traditional pretarsal gold weight (PT group; n = 15) or a new supratarsal model (ST group; n = 15) from May 2014 to April 2019. The main outcome measures were the 12-month postoperative weight prominence, weight migration, improvement of lagophthalmos, upper eyelid contour, and upper eyelid ptosis. The secondary outcome was long-term (24 months) reoperative rate. Results The new model group had significantly better eyelid contour (risk ratio [RR] 3.16, 95% confidence interval [CI] 1.62-6.15, p = 0.001), less weight prominence (RR 1.74, 95% CI 1.13-2.70, p = 0.013), less weight migration (RR 1.31, 95% CI 1.12-1.54, p = 0.001), and less eyelid ptosis (RR 2.36, 95% CI 1.21-4.59, p = 0.011) than the traditional model group. Improvement of lagophthalmos was not statistically significant between the two groups (RR 1.44, 95% CI 0.72-2.91, p = 0.303). The 24-month reoperative rate was 53.3% in the PT group versus 13.3% in the ST group (RR 2.00, 95% CI 1.15-3.49, p = 0.015). Conclusion The newly designed supratarsal gold weight showed superior postoperative outcomes than the standard traditional model.

Impact of the extent of resection of neuroendocrine tumor liver metastases on survival: A systematic review and meta-analysis

  • Rugved Kulkarni;Irfan Kabir;James Hodson;Syed Raza;Tahir Shah;Sanjay Pandanaboyana;Bobby V. M. Dasari
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.26 no.1
    • /
    • pp.31-39
    • /
    • 2022
  • In patients with neuroendocrine tumors with liver metastases (NETLMs), complete resection of both the primary and liver metastases is a potentially curative option. When complete resection is not possible, debulking of the tumour burden has been proposed to prolong survival. The objective of this systematic review was to evaluate the effect of curative surgery (R0-R1) and debulking surgery (R2) on overall survival (OS) in NETLMs. For the subgroup of R2 resections, outcomes were compared by the degree of hepatic debulking (≥ 90% or ≥ 70%). A systematic review of the literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines using PubMed, Medline, CINAHL, Cochrane, and Embase databases. Hazard ratios (HRs) were estimated for each study and pooled using a random-effects inverse-variance meta-analysis model. Of 538 articles retrieved, 11 studies (1,729 patients) reported comparisons between curative and debulking surgeries. After pooling these studies, OS was found to be significantly shorter in debulking resections, with an HR of 3.49 (95% confidence interval, 2.70-4.51; p < 0.001). Five studies (654 patients) compared outcomes between ≥ 90% and ≥ 70% hepatic debulking approaches. Whilst these studies reported a tendency for OS and progression-free survival to be shorter in those with a lower degree of debulking, they did not report sufficient data for this to be assessed in a formal meta-analysis. In patients with NETLM, OS following surgical resection is the best to achieve R0-R1 resection. There is also evidence for a progressive reduction in survival benefit with lesser debulking of tumour load.

Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model (다양한 강우강도 및 패턴에 따른 WEPP 모형의 유출‧첨두유출‧토양유실량 평가)

  • Choi, Jae-Wan;Ryu, Ji-Chul;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.795-804
    • /
    • 2012
  • Recently, changes in rainfall intensity and patterns have been causing increasing soil loss worldwide. As a result, the water ecosystem becomes worse and crops yield are reduced with soil loss and nutrient loss with it. Many studies have been proposed to estimate runoff and soil loss to predict or decrease non-point source pollution. Although the USLE has been used for many years in estimating soil losses, the USLE cannot reflect effects on soil loss of changes in rainfall intensity and patterns. The WEPP, physically based model, is capable of predicting soil loss and runoff using various rainfall intensity. In this study, the WEPP model was simulated for sediment yield, runoff and peak runoff using data of 5, 10, 30, 60 minute term rainfall, Huff's method and design rainfall. In case of rainfall interval of 5 minutes and 60 minutes, the sediment and runoff values decreased by 24% and 19%, respectively. The peak rate runoff values decreased by 16% when rainfall interval changed from 5 minutes to 60 minutes, indicating the peak rate runoff values are affected by rainfall intensity to some degrees. As a result of simulating using Huff's method, all values (sediment yield, runoff, peak runoff) were found to be the greatest at third quartile. According to the analysis under various design rainfall conditions (2, 3, 5, 10, 20, 30, 50, 100, 200, 300 years frequency), sediment yield, runoff, and peak runoff of 906.2%, 249.4% and 183.9% were estimated using 2 year to 300 year frequency rainfall data.

Viral Load Dynamics After Symptomatic COVID-19 in Children With Underlying Malignancies During the Omicron Wave

  • Ye Ji Kim;Hyun Mi Kang;In Young Yoo;Jae Won Yoo;Seong Koo Kim;Jae Wook Lee;Dong Gun Lee;Nack-Gyun Chung;Yeon-Joon Park;Dae Chul Jeong;Bin Cho
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.2
    • /
    • pp.73-83
    • /
    • 2023
  • Purpose: This study aimed to investigate the viral load dynamics in children with underlying malignancies diagnosed with symptomatic coronavirus disease 2019 (COVID-19). Methods: This was a retrospective longitudinal cohort study of patients <19 years old with underlying hemato-oncologic malignancies that were diagnosed with their first symptomatic severe acute respiratory syndrome coronavirus 2 polymerase chain reaction (PCR)-confirmed COVID-19 infection during March 1 to August 30, 2022. Review of electronic medical records and telephone surveys were undertaken to assess the clinical presentations and transmission route of the patients. Thresholds of negligible likelihood of infectious virus was defined as E gene reverse transcription (RT)-PCR cycle threshold (Ct) value ≥25. Results: During the 6-month study period, a total of 43 children with 44 episodes of COVID-19 were included. Of the 44 episodes, the median age of the patients included was 8 years old (interquartile range [IQR], 4.9-10.5), and the most common underlying disease was acute lymphoid leukemia (n=30, 68.2%), followed by patients post-hematopoietic stem cell transplantation (n=8, 18.2%). Majority of the patients had mild COVID-19 (n=32, 72.7%), and three patients (7.0%) had severe/critical COVID-19. Furthermore, 2.3% (n=1) died of COVID-19 associated acute respiratory distress syndrome. The largest percentage of the patients showed E gene RT-PCR Ct value ≥25 between 15-21 days (n=13, 39.4%), followed by 22-28 days (n=10, 30.3%). In 15.2% (n=5), E gene RT-PCR Ct value remained <25 beyond 28 days after initial positive PCR. Refractory malignancy status (β, 67.0; 95% confidence interval, 7.0-17.0; P=0.030) was significantly associated with prolonged duration of E gene RT-PCR <25. A patient with prolonged duration of E gene RT-PCR Ct value <25 was suspected to have infectivity shown by the transmission of the virus to his mother at day 86 after his initial positive test. Conclusions: Children that acquire symptomatic COVID-19 during refractory malignancy state are at a high risk for prolonged shedding warranting PCR-based transmission precautions in this cohort of patients.

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.