• Title/Summary/Keyword: interstellar medium: abundance

Search Result 8, Processing Time 0.02 seconds

CHARGE EXCHANGE EFFECTS IN COLLISIONAL IONIZATION EQUILIBRIUM OF C, N, AND O IONS (탄소, 질소 및 산소의 충돌이온화평형에서의 전하교환 효과)

  • Seon, Kwang-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2004
  • The charge exchange (or transfer) due to collision with hydrogen has important effects on the physical characteristics of astrophysical plasma. In this paper, collisional ionization equilibrium in the temperature range of ${\sim}1,000--80,000K$ are investigated for C, N, and O ions including the effects of charge exchange. The calculated ionic abundance fractions are compared with those of previous works. The ionic abundance fractions calculated in the paper can be used in understanding the spectroscopic properties of warm interstellar medium. It is also found that the ratio between the degree of ionization of oxygen and that of hydrogen shows big difference with the previously well-known result for the environment where the collisional ionization is not important. This implies that investigations on the collisional ionization in the warm interstellar medium are required.

SEARCH FOR $H_2COH+\;AND\;H_2^{13}CO$ IN DENSE INTERSTELLAR MOLECULAR CLOUDS

  • MINH Y. C.;IRVINE W. M.;MCGONAGLE D.
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.99-101
    • /
    • 1993
  • We have searched for the 2 mm transitions of $H_2COH^+(2_{02}-1_{01})$ and $H_2\;^{13}CO(2_{02} - 1_{01},\; 2_{12}-1_{11},\;and\;2_{11}-1_{10})$ toward the dense interstellar molecular clouds Orion A, TMC-1 and L134N using the FCRAO 14 m telescope. None of the transitions have been detected except the $H_2\;^{13}CO$ transitions toward Orion-KL. We set upper limits for the abundances of the protonated formaldehyde ion $(H_2COH^+)$, which are close to the abundances expected from ion-molecule chemistry.

  • PDF

The Interaction Between Accretion from the Interstellar Medium and Accretion from the Evolved Binary Component in Barium Stars

  • Jeong, Yeuncheol;Yushchenko, Alexander V.;Doikov, Dmytry N.
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • The reanalysis of the previously published abundance pattern of mild barium star HD202109 (${\zeta}$ Cyg) and the chemical compositions of 129 thin disk barium stars facilitated the search for possible correlations of different stellar parameters with second ionization potentials of chemical elements. Results show that three valuable correlations exist in the atmospheres of barium stars. The first is the relationship between relative abundances and second ionization potentials. The second is the age dependence of mean correlation coefficients of relative abundances vs. second ionization potentials, and the third one is the changes in correlation coefficients of relative abundances vs. second ionization potentials as a function of stellar spatial velocities and overabundances of s-process elements. These findings demonstrate the possibility of hydrogen and helium accretion from the interstellar medium on the atmospheres of barium stars.

The Possible Signs of Hydrogen and Helium Accretion from Interstellar Medium on the Atmospheres of F-K Giants in the Local Region of the Galaxy

  • Yushchenko, Alexander;Kim, Seunghyun;Jeong, Yeuncheol;Demessinova, Aizat;Yushchenko, Volodymyr;Doikov, Dmytry;Gopka, Vira;Jeong, Kyung Sook;Rittipruk, Pakakaew
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.175-183
    • /
    • 2021
  • The dependencies of the chemical element abundances in stellar atmospheres with respect to solar abundances on the second ionization potentials of the same elements were investigated using the published stellar abundance patterns for 1,149 G and K giants in the Local Region of the Galaxy. The correlations between the relative abundances of chemical elements and their second ionization potentials were calculated for groups of stars with effective temperatures between 3,764 and 7,725 K. Correlations were identified for chemical elements with second ionization potentials of 12.5 eV to 20 eV and for elements with second ionization potentials higher than 20 eV. For the first group of elements, the correlation coefficients were positive for stars with effective temperatures lower than 5,300 K and negative for stars with effective temperatures from 5,300 K to 7,725 K. The results of this study and the comparison with earlier results for hotter stars confirm the variations in these correlations with the effective temperature. A possible explanation for the observed effects is the accretion of hydrogen and helium atoms from the interstellar medium.

Radiative Transfer Model of Dust Attenuation Curves in Clumpy, Galactic Environments

  • Seon, Kwang-il;Draine, Bruce T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2016
  • The attenuation of starlight by dust in galactic environments is investigated through models of radiative transfer in a spherical, clumpy interstellar medium (ISM). We show that the attenuation curves are primarily determined by the wavelength dependence of absorption rather than by the underlying extinction (absorption+scattering) curve; the observationally derived attenuation curves cannot constrain a unique extinction curve unless the absorption or scattering efficiency is specified. Attenuation curves consistent with the Calzetti curve are found by assuming the silicate-carbonaceous dust model for the Milky Way (MW), but with the $2175{\AA}$ bump suppressed or absent. The discrepancy between our results and previous work that claimed the Small Magellanic Cloud dust to be the origin of the Calzetti curve is ascribed to the difference in adopted albedos; we use the theoretically calculated albedos whereas the previous ones adopted empirically derived albedos from observations of reflection nebulae. It is found that the model attenuation curves calculated with the MW dust are well represented by a modified Calzetti curve with a varying slope and UV bump strength. The strong correlation between the slope and UV bump strength, as found in star-forming galaxies at 0.5 < z < 2.0, is well reproduced if the abundance of the UV bump carriers is assumed to be 30-40% of that of the MW-dust; radiative transfer effects lead to shallower attenuation curves with weaker UV bumps as the ISM is more clumpy and dustier. We also argue that some of local starburst galaxies have a UV bump in their attenuation curves, albeit very weak.

  • PDF

The D/H Ratio of Water Ice at Low Temperatures

  • Lee, Jeong-Eun;Bergin, Edwin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.105.1-105.1
    • /
    • 2011
  • We present the modeling results of deuterium fractionation of water ice, $H_2$, and the primary deuterium isotopologues of $H3^+$ in the physical conditions associated with the star and planet formation process. We calculated the deuterium chemistry for a range of gas temperatures (Tgas~10-30 K) and ortho/para ratio (opr ) of $H_2$ based on state-to-state reaction rates and explore the resulting fractionation including the formation of a water ice mantle coating grain surfaces. We find that the deuterium fractionation exhibits the expected temperature dependence of large enrichments at low gas temperature, but only for opr-H2<0.01. More significantly the inclusion of water ice formation leads to large D/H ratios in water ice (${\geq}10^{-2}$ at 10 K) but also alters the overall deuterium chemistry. For T<20 K the implantation of deuterium into ices lowers the overall abundance of HD which reduces the efficiency of deuterium fractionation at high density. Under these conditions HD will not be the primary deuterium reservoir in the cold dense interstellar medium and $H3^+$ will be the main charge carrier in the dense centers of pre-stellar cores and the protoplanetary disk midplane.

  • PDF

The AGN-Starburst Connection traced by the Nitrogen Abundance

  • Matsuoka, Kenta;Nagao, Tohru;Marconi, Alessandro;Maiolino, Roberto;Park, Daeseong;Woo, Jong-Hak;Shin, Jaejin;Ikeda, Hiroyuki;Taniguchi, Yoshiaki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.40.2-40.2
    • /
    • 2014
  • The connection between the active galactic nuclei (AGNs) and star formation activity is one of the most important issues in understanding the coevolution of supermassive black holes (SMBHs) and galaxies. In our recent study, by using SDSS quasar spectra we found that the emission-line flux rations involving a nitrogen line, i.e., $NV{\lambda}1240$, correlate with the Eddington ratio. This correlation suggests that the mass accretion into SMBH is associated with a post-starburst phase, when AGB stars enrich the interstellar medium with the nitrogen. Moreover, we focused on nitrogen-loud quasars, which have prominent emission lines of the nitrogen, to investigate whether this argument is correct or not. We will present our recent results described above and discuss the relation between the star formation and feeding to SMBHs.

  • PDF

[ H2S (22,0 - 21,1) ] OBSERVATIONS TOWARD THE SGR B2 REGION

  • MINH Y. C.;IRVINE W. M.;KIM S.-J.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.131-135
    • /
    • 2004
  • The $H_2S\;(2_{2,0} - 2_{1,1})$ line emission is observed to be strongly localized toward Sgr B2(M), and emissions from other positions in the more extended SgrB2 region are almost negligible. $H_2S$ is thought to form effectively by the passage of the C-type shocks but to be quickly transformed to $SO_2$ or other sulfur species (Pineau des Forets et al. 1993). Such a shock may have enhanced the $H_2S$ abundance in Sgr B2(M), where massive star formation is taking place. But the negligible emission of $H_2S$ from other observed positions may indicate that these positions have not been affected by shocks enough to produce $H_2S$, or if they have experienced shocks, $H_2S$ may have transformed already to other sulfur-containing species. The $SO_2\;22_{2,20} - 22_{1,21}$ line was also observed to be detectable only toward the (M) position. The line intensity ratios of these two molecules appear to be very similar at Sgr B2(M) and IRAS 16239-2422, where the latter is a region of low-mass star formation. This may suggest that the shock environment in these two star-forming regions is similar and that the shock chemistry also proceeds in a similar fashion in these two different regions, if we accept shock formation of these two species.