Browse > Article
http://dx.doi.org/10.5140/JASS.2021.38.3.175

The Possible Signs of Hydrogen and Helium Accretion from Interstellar Medium on the Atmospheres of F-K Giants in the Local Region of the Galaxy  

Yushchenko, Alexander (Astrocamp Contents Research Institute)
Kim, Seunghyun (Astrocamp Contents Research Institute)
Jeong, Yeuncheol (History Department, Sejong University)
Demessinova, Aizat (Physico-Technical Department, Al Farabi Kazakh National University)
Yushchenko, Volodymyr (Main Astronomical Observatory of National Academy of Sciences of Ukraine)
Doikov, Dmytry (Department of Natural and Technical Sciences, Odessa National Maritime University)
Gopka, Vira (Astronomical Observatory, Odessa National University)
Jeong, Kyung Sook (DaeYang Humanity College, Sejong University)
Rittipruk, Pakakaew (National Astronomical Research Institute of Thailand)
Publication Information
Journal of Astronomy and Space Sciences / v.38, no.3, 2021 , pp. 175-183 More about this Journal
Abstract
The dependencies of the chemical element abundances in stellar atmospheres with respect to solar abundances on the second ionization potentials of the same elements were investigated using the published stellar abundance patterns for 1,149 G and K giants in the Local Region of the Galaxy. The correlations between the relative abundances of chemical elements and their second ionization potentials were calculated for groups of stars with effective temperatures between 3,764 and 7,725 K. Correlations were identified for chemical elements with second ionization potentials of 12.5 eV to 20 eV and for elements with second ionization potentials higher than 20 eV. For the first group of elements, the correlation coefficients were positive for stars with effective temperatures lower than 5,300 K and negative for stars with effective temperatures from 5,300 K to 7,725 K. The results of this study and the comparison with earlier results for hotter stars confirm the variations in these correlations with the effective temperature. A possible explanation for the observed effects is the accretion of hydrogen and helium atoms from the interstellar medium.
Keywords
stars: abundances; (stars:) circumstellar matter; stars: atmospheres; stars: Population I; stars: Population II; physical data and processes: accretion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Asplund M, Amarsi AM, Grevesse N, The chemical make-up of the Sun: a 2020 vision, Astron. Astrophys. in press (2021). https://arxiv.org/pdf/2105.01661
2 Bohm-Vitense E, The puzzle of the metallic line stars, Publ. Astron. Soc. Pac. 118, 419-435 (2006). https://doi.org/10.1086/499385   DOI
3 Burbidge EM, Burbidge GR, Fowler WA, Hoyle F, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547-650 (1957). https://doi.org/10.1103/RevModPhys.29.547   DOI
4 Castelli F, Kurucz R, New grids of ATLAS9 model atmospheres, in IAU Symposium 210, Uppsala, Sweden, 17-21 Jun 2002.
5 Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, et al., Origin of the heaviest elements: the rapid neutron-capture process, Rev. Mod. Phys. 93, 015002 (2021). https://doi.org/10.1103/RevModPhys.93.015002   DOI
6 Cowley CR, Bord DJ, The CP stars, an overview: then and now, IAU Symp. 224, 265-281 (2004). https://doi.org/10.1017/S174392130400465X   DOI
7 Drobyshevski EM, Peculiar A-stars and planetary systems, Astrophys. Space Sci. 35, 403-408 (1975). https://doi.org/10.1007/BF00637006   DOI
8 Erspamer D, North P, Automated spectroscopic abundances of A and F-type stars using echelle spectrographs. II. Abundances of 140 A-F stars from ELODIE, Astron. Astrophys. 398, 1121-1135 (2003). https://doi.org/10.1051/0004-6361:20021711   DOI
9 Fowler WA, Burbidge EM, Burbidge GR, Hoyle F, The synthesis and destruction of elements in peculiar stars of types A and B, Astrophys. J. 142, 423-450 (1965). https://doi.org/10.1086/148309   DOI
10 Greenstein JL, Analysis of the metallic-line stars. II. Astrophys. J. 109, 121-138 (1949). https://doi.org/10.1086/145112   DOI
11 Grevesse N, Asplund M, Sauval AJ, Scott P, The chemical composition of the Sun, Astrophys. Space Sci. 328, 179-183 (2010). https://doi.org/10.1007/s10509-010-0288-z   DOI
12 Havnes O, Conti PS, Magnetic accretion processes in peculiar A stars, Astron. Astrophys. 14, 1-11 (1971).
13 Jeong Y, Yushchenko A, Gopka V, Yushchenko V, Rittipruk P, et al., The barium star HD204075: iron abundance and the absence of evidence for accretion, J. Astron. Space Sci. 36, 105-113 (2019). https://doi.org/10.5140/JASS.2019.36.3.105   DOI
14 Havnes O, Magnetic stars as generators of cosmic rays, Astron. Astrophys. 13, 52-57 (1971).
15 Jeong Y, Yushchenko AV, Doikov DN, Gopka VF, Yushchenko VO, Chemical composition of RR Lyn - an eclipsing binary system with Am and λ Boo type components, J. Astron. Space Sci. 34, 75-82 (2017). https://doi.org/10.5140/JASS.2017.34.2.75   DOI
16 Kang YW, Yushchenko AV, Hong K, Guinan EF, Gopka VF, Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei, Astron. J. 145, 167 (2013). https://doi.org/10.1088/0004-6256/145/6/167   DOI
17 Kim C, Yushchenko AV, Kim SL, Jeon YB, Kim CH, Chemical composition and photometry of BE Lyncis, Publ. Astron. Soc. Pac. 124, 401-410 (2012). https://doi.org/10.1086/665943   DOI
18 Luck RE, Abundances in the local region. I. G and K giants, Astron. J. 150, 88 (2015). https://doi.org/10.1088/0004-6256/150/3/88   DOI
19 Michaud G, Diffusion processes in peculiar A stars, Astrophys. J. 160, 641 (1970). https://doi.org/10.1086/150459   DOI
20 Niemczura E, Morel T, Aerts C, Abundance analysis of prime B-type targets for steroseismology. II. B6-B9.5 stars in the field of view of the CoRoT satellite, Astron. Astrophys. 506, 213-233 (2009). https://doi.org/10.1051/0004-6361/200911931   DOI
21 Neiner C, Wade GA, Sikora J, Discovery of a magnetic field in the δ Scuti F2m star ρ Pup, Mon. Not. R. Astron. Soc. Lett. 468, L46-L49 (2016). https://doi.org/10.1093/mnrasl/slx023   DOI
22 North P, The rotation of AP stars, Astron. Astrophys. 141, 328-340 (1984).
23 Proffitt CR, Michaud G, Abundance anomalies in A and B stars and the accretion of nuclear-processed material from supernovae and evolved giants. Astrophys. J. 345, 998-1007 (1989). https://doi.org/10.1086/167969   DOI
24 Tanaka SJ, Chiaki G, Tominaga N, Susa H, Blocking metal accretion onto population III stars by stellar wind, Astrophys. J. 844, 137 (2017). https://doi.org/10.3847/1538-4357/aa7e2c   DOI
25 Venn KA, Lambert DL, Could the ultra-metal-poor stars be chemically peculiar and not related to the first stars, Astrophys. J. 677, 572 (2008). https://doi.org/10.1086/529069   DOI
26 Wallerstein G, Iben Jr. I, Parker P, Boesgaard AN, Hale GM, et al., Synthesis of the elements in stars: forty years of progress, Rev. Mod. Phys. 69, 995-1084 (1997) https://doi.org/10.1103/RevModPhys.69.995   DOI
27 Yushchenko AV, Jeong Y, Gopka VF, Vasileva SV, Andrievsky SM, et al., Chemical composition of RM_1-390-large magellanic cloud red supergiant, J. Astron. Space Sci. 34, 199-205 (2017a). https://doi.org/10.5140/JASS.2017.34.3.199   DOI
28 Yushchenko AV, Gopka VF, Kang YW, Kim C, Lee BC, et al., The chemical composition of ρ puppis and the signs of accretion in the atmospheres of B-F-type stars, Astron. J. 149, 59 (2015). https://doi.org/10.1088/0004-6256/149/2/59   DOI
29 Yushchenko AV, Gopka VF, Shavrina AV, Yushchenko VA, Vasileva SV, et al., Peculiarities of the abundance of chemical elements in the atmosphere of PMMR23-red supergiant in the small magellanic cloud due to interstellar gas accretion, Kinemat. Phys. Celest. Bodies. 33, 199-216 (2017b). https://doi.org/10.3103/S0884591317050075   DOI
30 Yushchenko AV, Kim C, Jeong Y, Dmytry DN, Volodymyr YA, et al., The chemical composition of V1719 Cyg: δ Scuti type star without the accretion of interstellar matter, J. Astron. Space Sci. 37, 157-163 (2020). https://doi.org/10.5140/JASS.2020.37.3.157   DOI
31 Kang YW, Yushchenko A, Hong K, Kim S, Yushchenko V, Chemical composition of the components of eclipsing binary star ZZ Bootis, Astron. J. 144, 35 (2012). https://doi.org/10.1088/0004-6256/144/2/35   DOI
32 Cowley CR, An examination of the planetesimal impact hypothesis of the formation of CP stars, Astrophys. Space Sci. 51, 349-362 (1977). https://doi.org/10.1007/BF00644158   DOI
33 Venn KA, Lambert DL, The chemical composition of three lambda Bootis stars, Astrophys. J. 363, 234-244 (1990). https://doi.org/10.1086/169334   DOI