• Title/Summary/Keyword: interstellar

Search Result 303, Processing Time 0.023 seconds

The emission spectrum from isolated black holes

  • Gwon, Sun-Ja;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.86.3-86.3
    • /
    • 2015
  • There could be significant numbers of isolated stellar mass black holes in our Galaxy. The detection of these black holes will provide important clues on the origin of supermassive black holes. Interstellar gas will be accreted to these isolated black holes in nearly spherical flow. The gas and the interstellar magnetic field will be compressed and emit bremsstrahlung and magnetic bremsstrahlung. We calculate the density, temperature, magnetic field of the accretion flow onto a 10 solar mass black hole as well as its radiative emission; special attention is given to cyclotron radiation and synchrotron radiation, which covers from microwave to X-ray. We consider the possibility to detect these radiation from isolated Galactic black holes with current instruments and surveys.

  • PDF

STARDUSTS IN SUPERNOVA REMNANTS SEEN BY AKARI

  • Koo, Bon-Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.225-230
    • /
    • 2012
  • Supernovae (SN) and supernova remnants (SNRs) play a major role in the life-cycle of interstellar dusts. Fast shock waves generated by SN explosions sweep out the interstellar space destroying dust grains and modifying their physical and chemical properties. The dense, cooling SN ejecta, on the other hand, provide an environment for dusts to condense. Recent space-infrared telescopes have revealed the hidden universe related to these fascinating microscopic processes. In this paper, I introduce the results on stardusts in young core-collapse supernova remnants obtained by AKARI. The AKARI results show diverse infrared characteristics of stardusts associated with SNRs, implying diverse physical/chemical stellar structures and circumstellar environments at the time of explosion.

HST NIC3 PHOTOMETRY OF METAL-RICH GLOBULAR CLUSTERS PALOMAR 6, LILLER 1, AND 47 TUC (NGC 104)

  • Lee, Jae-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.167-180
    • /
    • 2004
  • We present HST NIC3 photometry of metal-rich globular clusters Palomar 6, Liller 1 and 47 Tuc (NGC 104). We discuss the interstellar reddening law for the HST NICMOS F110W/F160W photometric system which depends on the temperature of the source. The distance moduli and interstellar reddening values for Palomar 6 and Liller 1 are estimated by comparing the magnitudes and colors of RHB stars in the clusters with those of 47 Tuc. We obtain $(m-M)_0=14.48$mag and E(B-V)=1.34mag for Palomar 6 and $(m-M)_0=15.17$mag and E(B-V)=2.50 mag for Liller 1.

Small scale Structure of Galactic Molecular Clouds toward Continuum Sources by KVN

  • Han, Junghwan;Yun, Young Joo;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.82-82
    • /
    • 2014
  • One of the subjects in clouds' structure and development is small scale structure of interstellar cloud. The possibility of AU scale structure (Marscher et al. 1993; Moore & Marscher 1995; Roy et al. 2012) is discussed, and this small scale structure is considered as the result of hydrogen volume density (Moore & Marscher 1995), or small-scale chemical and other inhomogeneities (Liszt & Lucas 2000). In order to study this subject with emission line, extremely high resolution is mandatory by VLBI system. However, the alternative method could be observing the absorption line of interstellar cloud on the continuum object. In this case, the resolution would be restricted to the size of the continuum object, if the size of the object is smaller than the resolution of a used telescope. We observed the previous researchers' three objects (BLLAC, NRAO150, B0528+138), whose spectrums are changed from 1993 to 1998 (Liszt & Lucas 2000), with KVN. Through KVN observation, we found the changes of optical depth spectrum compared with the previous spectrums. We will discuss the optical depth spectrum variation by time variation and the meaning of it.

  • PDF

ASTROCHEMISTRY AND INTERSTELLAR MOLECULES (천체화학과 성간분자)

  • Min, Y.C.
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Astrochemistry provides powerful tools to understand various cosmic phenomena, including those in our solar system to the large-scale structure of the universe. In addition, the chemical property of an astronomical body is a crucial factor which governs the evolution of the system. Recent progress in astrophysical theories, computational modelings, and observational techniques requires a detailed understanding of the interactions between the constituents of an astronomical system, which are atoms and molecules within the system. Especially the far-infrared/sub-millimeter wave range, which is called as the last frontier in astronomical observations, contains numerous molecular lines, which may provide a huge amount of new information. However, we need an astrochemical understanding to use this information fully. Although this review is very limited, I would like to stress the importance of astrochemical approach in this overview for the field, which is getting much more attention than ever before.