• Title/Summary/Keyword: intersections

Search Result 675, Processing Time 0.021 seconds

Study on the Operational Effect of Real-time Traffic Signal Control Using the Data from Smart Instersections (스마트교차로 데이터를 활용한 실시간 교통신호제어 운영 효과 분석)

  • Sangwook Lee;Bobae Jeon;Seok Jin Oh;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.48-62
    • /
    • 2023
  • Recently, smart intersections have been installed in many intelligent transportation system projects, but few cases use them for traffic signal operations besides traffic volume collection and statistical analysis. In order to respond to chronic traffic congestion, it is necessary to implement efficient signal operations using data collected from smart intersections. Therefore, this study establishes a procedure for operating a real-time traffic signal control algorithm using smart intersection data for efficient traffic signal operations and improving the existing algorithm. Effect analysis confirmed that intersection delays are reduced and the section speed improves when the offset is adjusted.

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS (독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발)

  • Dr. Tae-Jun Ha
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF

Design of Intersection Simulation System for Monitoring and Controlling Real-Time Traffic Flow (실시간 교통흐름의 모니터링 및 제어를 위한 교차로 시뮬레이션 시스템 설계)

  • Jeong Chang-Won;Shin Chang-Sun;Joo Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.85-97
    • /
    • 2005
  • In this paper, we construct the traffic information database by using the acquired data from the traffic information devices installed in road network, and, by referring to this database, propose the intersection simulation system which can dynamically manage the real-time traffic flow for each section of road from the intersections, This system consists of hierarchical 3 parts, The lower layer is the physical layer where the traffic information is acquired on an actual road. The traffic flow control framework exists in the middle layer. The framework supports the grouping of intersection, the collection of real-time traffic flow information, and the remote monitoring and control by using the traffic information of the lower layer, This layer is designed by extending the distributed object group framework we developed. In upper layer, the intersection simulator applications controlling the traffic flow by grouping the intersections exist. The components of the intersection application in our system are composed of the implementing objects based on the Time-triggered Message-triggered Object(TMO) scheme, The intersection simulation system considers the each intersection on road as an application group, and can apply the control models of dynamic traffic flow by the road's status. At this time, we use the real-time traffic information collected through inter-communication among intersections. For constructing this system, we defined the system architecture and the interaction of components on the traffic flow control framework which supports the TMO scheme and the TMO Support Middleware(TMOSM), and designed the application simulator and the user interface to the monitoring and the controlling of traffic flow.

  • PDF

A Study on Appropriate Traffic Volume Calculation for Revitalizing Roundabout Installation (국내 회전교차로 활성화를 위한 적정교통량 산정에 관한 연구)

  • Lee, Dongmin;You, Jungho
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.43-52
    • /
    • 2013
  • A roundabout is a form of circular intersection in which traffic travels counterclockwise around a central island and in which entering traffic must yield to circulating traffic. It has been known that a roundabout provides substantially better operational and safety characteristics than other intersections including rotaries. Recently, a roundabout has started to be constructed due to its efficiency, safety, and other advantages of a roundabout comparing other intersections in Korea. However, there has been no guideline to be used to decide appropriate intersection types considering given conditions of the intersections. To solve this problem, the guideline with traffic volume to choose the suitable intersection types was developed based on analysis results using the SIDRA software which is generally used to analyze operational effects of roundabouts. It was found that a roundabout is more efficient than signalized intersection when the traffic volume is between 125 and 450 veh/h on one lane road and roundabout is not recommended when there are more than 30% left turn traffic. The optimal traffic volume provided in this research will be usefully used in planing and designing roundabouts in Korea.

A Path-based Traffic Flow Simulation Model for Large Scale Network (기종점 기반 대규모 가로망 교통류 시뮬레이션 모형)

  • 조중래;홍영석;손영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.115-131
    • /
    • 2001
  • The Purpose of this study is to develop a simulation model for large-scale network with interrupted flow as well as uninterrupted flow. The Cell Transmission(CT) theory is used to simulate traffic flow. Flow transition rules have been newly developed to simulate traffic flows at merging and diverging sections, and signalized intersections. In the model, it is assumed that dynamic OD table is exogenously given. Simulation results for toy network shows that the model can explain queue dynamics not only in signalized intersections of urban arterials, but also in merging and diverging sections of freeway. In case study, the model successfully simulated traffic flows of 145,000 vehicles on CBD network of city of Seoul with 74 traffic zones, 133 signalized intersections among 395 nodes and 1110 links.

  • PDF

Adjustment Factor for Heavy Vehicles in Estimating Capacity at Unsignalized Intersections (비신호 교차로의 중차량 용량 보정계수에 관한 연구)

  • 이용재;김석근
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.2
    • /
    • pp.89-98
    • /
    • 2001
  • The objective of this Paper is to derive an adjustment factor for the presence of heavy vehicles when estimating capacity at unsignalized intersections (and/or at modern roundabouts). According to the 1997 and 2000 Highway Capacity Manual (HCM), potential capacity in such cases is estimated by simply adjusting base critical gap and base follow-up time. However, the procedure suggested in the HCM may lead to some errors in the adjustment, hence resulting in poor evaluation and design for the intersections, because it determines the value of adjusting factors by only the number of lanes on main streets regardless of the types of heavy vehicles. This paper shows a simple formula for making the adjustment. This formula is much like the HCM formula used for heavy vehicles in estimating highway capacity by the adoption of passenger car units (PCU). In contrast to the traditional approaches seen in the HCM, the PCU value of this case is explicitly expressed by the flow rate in the major streams and the gap difference in critical gaps chosen by passenger cars and particular heavy vehicles. Computational results of the adjustment factor are graphically illustrated.

  • PDF

A Study on the Development of an Economic Efficiency Model Considering Vehicle Operating Cost Properties of Signalized Intersections (신호교차로의 차량운행비용 특성을 고려한 경제성분석 모형개발)

  • Byeon, Eun-A;Kim, Yeong-Chan;An, So-Yeong;Go, Gwang-Deok;Yun, Su-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.199-206
    • /
    • 2009
  • In relation with economical efficiency analysis on investment evaluation of transportation system, among vehicle operating cost saving benefit that is applied to general preliminary assessment guidelines and investment evaluation guidelines, oil expense calculated data which concentrated and analyze on the relationship between oil consumption amount on running state and running speed. For uninterrupted flow which does not have stopped delay due to traffic signal, consideration for reduction benefit is possible due to the changes of running speed and travel time however, for interrupted flow which the stopping occurs due to signal control on actual signal intersection has no consideration for stopping delay time reduction and stopping rate improvement thus reflection of reality on improved effect analysis is difficult. Therefore, this research makes a framework to analyze benefits that reflects the features of signalized intersections by benefits associated with decrease of stopping delay time with existing research and developing vehicle operating cost calculation model formula. Vehicle operating cost has been redefined considering the stopping delay time by applying the oil consumption amount at idling and the economical benefit between conventional model and newly developed model when applied for the optimization of traffic signal system on the two roads in Seosan city has been analyzed comparative. While the importance of traffic system maintenance is being emphasized due to the increase of congested areas on roads, it is expected to assist in more realistic economical analysis which reflect the delay improvement through the presentation of an economic analysis model that considers the features of signalized intersections in signal optimization system improvements and effect analysis of congestion improvement projects`.

Application of AHP to Select for Priority of Permanent Traffic Volume Survey Site (AHP를 적용한 상시 교통량 조사 지점 선정 우선순위 결정에 관한 연구)

  • Oh, Ju-Sam;Lim, Sung-Han;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.21-30
    • /
    • 2005
  • Traffic volume data have been used for the plan, the design, and the operation of highway. Since 1955, traffic survey has been nation- widely carried out at national highway and the regular survey in national highway has been conducted at the intersections of highways. However, it is critical issue to select the priority of the regular survey because it is almost impossible to conduct regular survey at all intersections of national highways. In this study, MCDM(Multiple Criteria Decision Making) using AHP(Analytic Hierarchy Process) was applied to decide the priority of the regular survey. The following standard variables for determining the priority was selected the highway plan variables[AADT, VKT, Peak Hourly Volume, Location of highway from Urban], the highway design variables[Volume(pcu), Directional Traffic Volume, Heavy Vehicle Rate], and the highway operation variables[Speed, Density, V/C]. The standard variables were quantified and normalized. Using the Eigen vector method, the weighted values of each hierarchy based on the pair-wise comparison values from the questionnaire survey were calculated. The selection of the priority of regular survey was dependent on the size of the product of the weighted values for each hierarchy and the normalized values for the standard variables. Finally, the priority of regular survey of the intersections of national highways was determined according to the order in the size of the product of two values.

  • PDF

An Analysis on Vehicle Accident Factors of Intersections using Random Effects Tobit Regression Model (Random Effects Tobit 회귀모형을 이용한 교차로 교통사고 요인 분석)

  • Lee, Sang Hyuk;Lee, Jung-Beom
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.26-37
    • /
    • 2017
  • The study is to develop safety performance functions(SPFs) for urban intersections using random effects Tobit regression model and to analyze correlations between crashes and factors. Also fixed effects Tobit regression model was estimated to compare and analyze model validation with random effects model. As a result, AADT, speed limits, number of lanes, land usage, exclusive right turn lanes and front traffic signal were found to be significant. For comparing statistical significance between random and fixed effects model, random effects Tobit regression model of total crash rate could be better statistical significance with $R^2_p$ : 0.418, log-likelihood at convergence: -3210.103, ${\rho}^2$: 0.056, MAD: 19.533, MAPE: 75.725, RMSE: 26.886 comparing with $R^2_p$ : 0.298, log-likelihood at convergence: -3276.138, ${\rho}^2$: 0.037, MAD: 20.725, MAPE: 82.473, RMSE: 27.267 for the fixed model. Also random effects Tobit regression model of injury crash rate has similar results of model statistical significant with random effects Tobit regression model.

Study of Effectiveness of Signal Preemption Strategy using VISSIM (VISSIM을 이용한 Signal Preemption 전략도입 및 효과분석)

  • Jo, Han-Seon;O, Ju-Taek;Lee, Jae-Myeong;Park, Dong-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.93-101
    • /
    • 2006
  • The signalized intersections near highway-railroad grade crossing are operated without signal preemption in Korea when trains are approaching the crossing. This signal operation is very dangerous because queues from the intersection can extend back over the track, thereby creating the Potential for a serious vehicle-train accident. And the queues from the crossing can extend to the intersection with the normal signal operation while trains Pass the crossing. In this case the intersection is disrupted, and delay and the Potential for vehicle accident increase highly In order to improve the intersection performance and Protect the accident the crossings and intersections. signal Preemption designed to provide a special control mode should be implemented. In this study it was shown that intersection Performance near highway-railroad grade crossing improved using signal preemption. When signal Preemption is implemented at the test site, the delay was reduced by about 9sec/veh. Even though there were vehicle-train accidents at the crossing in all 30 simulations without signal preemption. there was no vehicle-train accidents at all when signal preemption is used.