Korean Journal of Computational Design and Engineering
/
v.9
no.3
/
pp.203-211
/
2004
In this paper, we present a method of extracting a regular 2-manifold triangular net from a triangular net including degenerate and self-intersected triangles. This method can be applied to obtaining an offset model without degenerate and self-intersected triangles. Then this offset model can be used to generate CL curves and extract machining features for CAPP The robust and efficient algorithm to detect valid triangles by growing regions from an initial valid triangle is presented. The main advantage of the algorithm is that detection of valid triangles is performed only in valid regions and their adjacent selfintersections, and omitted in the rest regions (invalid regions). This advantage increases robustness of the algorithm. As well as a k-d tree bucketing method is used to detect self-intersections efficiently.
In this paper, we proposed localization method of mobile robot using color landmark mounted on ceiling. This work is composed 2 parts : landmark recognition part which finds the position of multiple landmarks in image and identifies them and absolute position estimation part which estimates the location and orientation of mobile robot in indoor environment. In landmark recognition part, mobile robot detects artificial color landmarks using simple histogram intersection method in rg color space which is insensitive to the change of illumination. Then absolute position estimation part calculates relative position of the mobile robot to the detected landmarks. For the verification of proposed algorithm, ceiling-orientated camera was installed on a mobile robot and performance of localization was examined by designed artificial color landmarks. As the result of test, mobile robot could achieve the reliable landmark detection and accurately estimate the position of mobile robot in indoor environment.
Proceedings of the Korean Society of Precision Engineering Conference
/
1997.04a
/
pp.782-787
/
1997
This paper proposes methods for pencil machining and uncut area machining. Based on Z-map represented by triangular facets, self-intersection-free offset surface is generated with K-offset method in case of ball mill and flat mill Pencil machining can elliminate overload area before main machining rough, semi-finish and finish cutting,preventing fluctuations of cutting forces in concave regions form causing bad machining condition. Low productivity is caused by uncut area which has excessive or irreguar finishing allowance. Uncut area machining has the finishing allowance keep uniformly on part surface. This paper deals with two types of uncaut area, machining detection of excessive area and user-defined area.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.8
no.1
/
pp.127-135
/
2009
This paper presents a new technique for corner shape based object retrieval from a database. The proposed feature matrix consists of values obtained through a neighborhood operation of detected corners. This results in a significant small size feature matrix compared to the algorithms using color features and thus is computationally very efficient. The corners have been extracted by finding the intersections of the detected lines found using Hough transform. As the affine transformations preserve the co-linearity of points on a line and their intersection properties, the resulting corner features for image retrieval are robust to affine transformations. Furthermore, the corner features are invariant to noise. It is considered that the proposed algorithm will produce good results in combination with other algorithms in a way of incremental verification for similarity.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.54
no.11
/
pp.669-672
/
2005
An algorithm detecting abrupt and gradual shot boundaries is proposed in this Paper. The conventional methods detect abrupt shot boundaries well, but do not show good performance on gradual shot boundaries. The proposed method Is based on the fact that the difference of the characteristic between frames is large when the shot conversion occurs. And the Proposed method detects abrupt and gradual shot boundaries with one algorithm. Moreover, it detects not only position where gradual shot conversion occurs, but also the exact duration where gradual shot conversion occurs.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.511-513
/
2001
지능형 교통 시스템(ITS)은 1) 도로의 상황 분석과 2) 위반 차량의 검지를 자동으로 수행하여 원활한 교통 제어를 제공하는 목적을 가지고 있다. 본 논문에서는 교차로에서 위반 차량을 검지하기 위하여 도로위의 차량 검지하고 차량의 진행 경로를 추적하는 기법으로 주간에는 배경 영상을 사용하지 않고 프레임간의 차를 이용하여 차량의 움직임 정보를 추출하고 야간에는 전조등을 검출하여 차량을 추적하는 기법으로 주간의 겨우 차량의 움직임만을 감지하므로 칼만 필터(Kalman Filter) 등에 의한 예측이 불가능하므로 현재 위치와 진행방향으로 움직임 정보를 추적하는 기법을 제안한다. 제안하는 기법은 주간 그림자의 영향과 야간의 난반사의 영향을 제거할 수 있고 입력 영상을 320x240으로 축소하여 초당 10프레임이상으로 처리하므로 정확한 차량의 움직임을 추적할 수 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.485-488
/
2013
최근 자동차 산업의 활성화로 인해 교통사고 급증이 사회 문제화 되면서 사고를 미연에 방지할 수 있는 운전자 보조 시스템 연구가 활발하게 이루어지고 있다. 일반적으로 자동차 사고 원인의 70% 이상이 운전자 과실에 의해서 발생되고 전체 추돌사고의 75%가 시속 29km 이하의 속도에서 발생한다. 이를 예방하기 위해서 운전자의 인지 판단을 보조하는 시스템의 개발이 많이 이루어지고 있는데, 예를 들어 자동 주차 시스템, AVM(Around View Monitoring) 시스템 등이 있다. 본 논문에서는 AVM 시스템 중 원근 왜곡을 보정하는 단계에서 직선 및 교점을 검출할 때, NMS(Non-Maximum Suppression)를 적용한 허프 변환 방법을 사용할 것이다. 또한 기존의 Sub-Pixel을 이용한 직선 및 교점 검출 방법과 NMS을 적용한 허프 변환 방법을 사용한 직선 및 교점을 검출하는 방법을 비교 분석함으로써 제안하는 NMS를 적용한 허프변환을 이용한 직선 및 교점을 검출하는 방법을 사용하여 보다 효율적인 AVM 시스템의 구현 가능성을 검증한다.
In this paper, a content-based image retrieval scheme based on scale-space theory is proposed. The existing methods using scale-space theory consider all scales for image retrieval,thereby requiring a lot of computation. To overcome this problem, the proposed algorithm utilizes amodified histogram intersection method to select candidate images from database. The relative scalebetween a query image and a candidate image is calculated by the ratio of histograms. Feature pointsare extracted from the candidates using a corner detection algorithm. The feature vector for eachfeature point is composed of RGB color components and differential invariants. For computing thesimilarity between a query image and a candidate image, the euclidean distance measure is used. Theproposed image retrieval method has been applied to various images and the performance improvementover the existing methods has been verified.
Proceedings of the Korean Information Science Society Conference
/
2006.10a
/
pp.484-489
/
2006
Private Matching은 각기 다른 두 참여자 (two-party)가 가진 데이터의 교집합 (intersection)을 구하는 문제이다. Private matching은 보험사기 방지시스템 (insurance fraud detection system), 의료정보 검색, 항공기 탐승 금지자 목록 (Do-not-fly list) 검색 등에 이용될 수 있으며 다자간의 계산 (multiparty computation)으로 확장하면 전자투표, 온라인 게임 등에도 이용될 수 있다. 2004년 Freedman 등은 이 문제를 확률적 (probabilistic)으로 해결하는 프로토콜 (protocol) [1]을 제안하고 악의적인 공격자 (malicious adversary) 모델과 다자간 계산으로 확장하였다. 이 논문에서는 기존의 프로토콜을 결정적 (deterministic) 방법으로 개선하여 Semi-Honest 모델에서 결과의 정확성을 보장하는 한편, 이를 악의적인 공격자 모델에 확장하여 신뢰도와 연산속도를 향상시키는 새로운 프로토콜을 제안한다.
This study was carried out to generate various images of railroad surfaces with random defects as training data to be better at the detection of defects. Defects on the surface of railroads are caused by various factors such as friction between track binding devices and adjacent tracks and can cause accidents such as broken rails, so railroad maintenance for defects is necessary. Therefore, various researches on defect detection and inspection using image processing or machine learning on railway surface images have been conducted to automate railroad inspection and to reduce railroad maintenance costs. In general, the performance of the image processing analysis method and machine learning technology is affected by the quantity and quality of data. For this reason, some researches require specific devices or vehicles to acquire images of the track surface at regular intervals to obtain a database of various railway surface images. On the contrary, in this study, in order to reduce and improve the operating cost of image acquisition, we constructed the 'Defective Railroad Surface Regeneration Model' by applying the methods presented in the related studies of the Generative Adversarial Network (GAN). Thus, we aimed to detect defects on railroad surface even without a dedicated database. This constructed model is designed to learn to generate the railroad surface combining the different railroad surface textures and the original surface, considering the ground truth of the railroad defects. The generated images of the railroad surface were used as training data in defect detection network, which is based on Fully Convolutional Network (FCN). To validate its performance, we clustered and divided the railroad data into three subsets, one subset as original railroad texture images and the remaining two subsets as another railroad surface texture images. In the first experiment, we used only original texture images for training sets in the defect detection model. And in the second experiment, we trained the generated images that were generated by combining the original images with a few railroad textures of the other images. Each defect detection model was evaluated in terms of 'intersection of union(IoU)' and F1-score measures with ground truths. As a result, the scores increased by about 10~15% when the generated images were used, compared to the case that only the original images were used. This proves that it is possible to detect defects by using the existing data and a few different texture images, even for the railroad surface images in which dedicated training database is not constructed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.