• Title/Summary/Keyword: interpolator

Search Result 132, Processing Time 0.027 seconds

Simulation Study for the Application of NURBS Interpolator (CNC공작기계에 NURBS 보간 알고리즘 적용을 위한 시뮬레이션 분석)

  • 김태훈;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.979-982
    • /
    • 2001
  • In CNC machining, demands on precision machining of free formed surface model are increasing. Most of the CAD/CAM systems provide the NURBS(Non-Uniform Rational B-Spline) interpolator. NURBS is defined with NURBS parameter by control point, weight value and knot value. This paper shows the realtime NURBS interpolation algorithms and compared with each other. One is based on the equal length of curve segments rather than equal increment of the parameter Δu. The other is to limit the interpolation error to any desired level by adjusting the feedrate considering the curvature of the shape and sampling time.

  • PDF

NURBS Interpolator for Controlling the Surface Roughness (표면 거칠기를 고려한 NURBS 보간기)

  • 최인휴;양민양;이강주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.162-167
    • /
    • 2003
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill. the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed for generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

  • PDF

Real-Time Surface Interpolator for Multiple Surface Machining Based on a Surface Cycle Command (복합 사이클 코드 지령 방식의 다중곡면 가공을 위한 실시간 곡면 보간기)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.97-107
    • /
    • 2007
  • The present CNC machining system if without any CAM software has been limited to 2D or 2.5D plane cut using lines, arcs and curves. If the CNC is equipped with a surface interpolation module and a surface reorganizing module inside it, we can easily try 3D surface machining without aid of CAM software. The existing NURBS surface interpolator is simple and direct to use for a unit surface. However, it enables only machining of each reference surface individually even when machining a simple composite surface. In this paper, we propose a method which can unify and reorganize various reference surfaces with a newly defined NURBS surface cycle command: a multi-repetitive cycle command such as in a CNC turning center. We also introduce a reorganizing rule for reference surfaces using NURBS properties. The usefulness of the proposed method is verified through computer simulation.

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Sub-pixel image interpolations for PIV

  • Kim Byoung Jae;Sung Hyung Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.47-55
    • /
    • 2004
  • Several interpolations for image deformation in PIV were evaluated. The tested interpolation methods are linear, quadratic, truncated sinc, windowed sinc, cubic, Lagrange, Gaussian $2^{nd}\;and\;6^{th}$ interpolators. Bias errors and random errors were evaluated in the range of $0\~3.0$ pixel uniform displacement using synthetic images. We also measured the time cost of each interpolator with respect to kernel size. The cubic interpolator with $6\times6$ kernel showed the best results in terms of the performance and time cost.

  • PDF

A New Contour Error Model for Cross-Coupled Controller in CNC Machine Tools (CNC 공작기계에서 상호결합제어기를 위한 새로운 윤곽오차모델)

  • 이재하;양승한
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.152-157
    • /
    • 2000
  • In the control of CNC machine tools, it is significant for precise machining to reduce the contour error. The object of servo-control is reduction of contour error and tracking error. In past studies, there were two approaches to control a servo-system. One was to eliminate axial tracking errors, and the other was to control contour errors. The Cross-coupled controller(CCC) was introduced fro ma veiwpoint of contour error model. Recently, for machining part with free form surfaces, we propose a new contour error model based on curve interpolator. It is presented here that performance of CCC using proposed model is enhanced. Therefore, we can make more precise parts with the curve interpolator and the new contour error model.

  • PDF

Design of a programmable current-mode folding/interpolation CMOS A/D converter (프로그래머블 전류모드 폴딩 . 인터폴레이션 CMOS A/D 변환기 설계)

  • 김형훈
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.45-48
    • /
    • 2001
  • An programmable current-mode folding and interpolation analog to digital converter (ADC) with programmable interpolator is proposed in this paper. A programmable interpolator is employed not only to vary the resolution of data converter, but also to decrease a power dissipation within the ADC. Because of varying the number of interpolation circuits, resolution is vary from 6 to 10bit. The designed ADC fabricated by a 0.6${\mu}{\textrm}{m}$ n-well CMOS double metal/single poly process. The experimental result shows the power dissipation from 26 to 87mW with a power supply of 3.3V.

  • PDF

Developement of New Digital Beamforming Algorithm Using Interpolator (Interpolator를 이용한 새로운 디지털 빔 집속 알고리즘의 개발)

  • Lee, Y.H.;Shon, H.R.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.217-218
    • /
    • 1998
  • We propose a new digital beamforming algorithm using an interpolation filter in ultrasonic imaging systems. We compared the performances of the proposed algorithm to those of the conventional digital bemforming algorisms, post-beamformer and phase rotation beamformer, by a computer simulation and experiments. The results show that the proposed algorithm has better performance than the others.

  • PDF

Approximate Interpolator for Direct Fourier Reconstruction in Diffraction Tomography (회절 단층법에서 직접 푸리에 재구성을 위한 근사적 보간 함수에 관한 연구)

  • Lee, Moon Ho;Lim, Young Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.167-172
    • /
    • 1987
  • In this paper, the interpolation schemes for Direct Fourier Reconstruction in Diffraction Tomography are discussed. The interpolator using circular sampling theorem is modified so that the reconstructed image may be closer to original object than those produced with other interpolators. Reconstructed images obtained by computer simulations with several interpolators including that derived in this paper are compared to original object: two concentric cylinders.

  • PDF