• 제목/요약/키워드: interpolation problem

검색결과 394건 처리시간 0.033초

자유시점 TV를 위한 다시점 비디오의 계층적 깊이 영상 표현과 H.264 부호화 (Layered Depth Image Representation And H.264 Encoding of Multi-view video For Free viewpoint TV)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제7권2호
    • /
    • pp.91-100
    • /
    • 2011
  • Free viewpoint TV can provide multi-angle view point images for viewer needs. In the real world, But all angle view point images can not be captured by camera. Only a few any angle view point images are captured by each camera. Group of the captured images is called multi-view image. Therefore free viewpoint TV wants to production of virtual sub angle view point images form captured any angle view point images. Interpolation methods are known of this problem general solution. To product interpolated view point image of correct angle need to depth image of multi-view image. Unfortunately, multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, confirmed high compression performance and good quality reconstructed image.

Super-Resolution Iris Image Restoration using Single Image for Iris Recognition

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권2호
    • /
    • pp.117-137
    • /
    • 2010
  • Iris recognition is a biometric technique which uses unique iris patterns between the pupil and sclera. The advantage of iris recognition lies in high recognition accuracy; however, for good performance, it requires the diameter of the iris to be greater than 200 pixels in an input image. So, a conventional iris system uses a camera with a costly and bulky zoom lens. To overcome this problem, we propose a new method to restore a low resolution iris image into a high resolution image using a single image. This study has three novelties compared to previous works: (i) To obtain a high resolution iris image, we only use a single iris image. This can solve the problems of conventional restoration methods with multiple images, which need considerable processing time for image capturing and registration. (ii) By using bilinear interpolation and a constrained least squares (CLS) filter based on the degradation model, we obtain a high resolution iris image with high recognition performance at fast speed. (iii) We select the optimized parameters of the CLS filter and degradation model according to the zoom factor of the image in terms of recognition accuracy. Experimental results showed that the accuracy of iris recognition was enhanced using the proposed method.

계층적 깊이 영상 표현에 의한 컬러와 깊이 정보를 포함하는 다시점 영상에 대한 효율적인 압축기술 (Efficient Compression Technique of Multi-view Image with Color and Depth Information by Layered Depth Image Representation)

  • 임중희;신종홍;지인호
    • 한국통신학회논문지
    • /
    • 제34권2C호
    • /
    • pp.186-193
    • /
    • 2009
  • 다시점 비디오는 데이터 양이 매우 많아서 이를 효과적으로 저장하고 전송하기 위해서는 새로운 압축 부호화의 기술 개발이 필수적이다. 계층적 깊이 영상은 다시점 비디오를 효과적으로 부호화할 수 있는 방법으로 여러 시점의 컬러와 깊이 영상을 합성하여 하나의 데이터 구조로 만든 것이다. 본 논문에서는 실제 거리비교, 오버랩 문제해결, YCrCb 컬러변환을 이용한 효율적인 계층적 깊이 영상 표현을 통해서 다시점 영상에 대한 압축 효율을 향상시키는 방법을 제안하였다. 실험 결과를 통해서 압축성능 향상과 우수한 복원 성능을 얻을 수 있었다.

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.

블록 기반 영역 분할을 이용한 객체 기반 스테레오 정합 기법 (An Object-based Stereo Matching Method Using Block-based Segmentation)

  • 곽노윤
    • 디지털콘텐츠학회 논문지
    • /
    • 제5권4호
    • /
    • pp.257-263
    • /
    • 2004
  • 본 논문은 객체 기반 스테레오 정합에 있어서, 분할영역 내부에 존재하는 단계적인 변위의 변화를 추정할 수 있는 스테레오 정합 알고리즘에 관한 것이다. 우산 분할영역을 효과적으로 표현할 수 있는 복수의 샘플점들을 선정한 다음에 각 샘플점 주위에 인접한 영역 내부의 미소영역을 취하여 스테레오 정합을 수행한다. 이후, 선택된 각 샘플점의 변위에 의한 평면의 방정식을 이용하여 내부 변위들을 보간한다. 제안된 방법에 따르면, 샘플점에서 얻어진 변위 값을 영역내부로 전파시킴으로써 깊이 추정이 단지 특징점들에서만 국한되는 특징 기반 기법의 문제점을 해결할 수 있으며, 또한 분할영역의 외곽선에서 샘플점을 추출함으로써 단순 영역에서의 깊이 추정이 모호하게 되는 영역기반 기법의 문제점을 효과적으로 억제시킬 수 있다.

  • PDF

A TWO-DIMENSIONAL FINITE VOLUME METHOD FOR TRANSIENT SIMULATION OF TIME- AND SCALE-DEPENDENT TRANSPORT IN HETEROGENEOUS AQUIFER SYSTEMS

  • Liu, F.;Turner, I.;Ahn, V.;Su, N.
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.215-241
    • /
    • 2003
  • In this paper, solute transport in heterogeneous aquifers using a modified Fokker-Planck equation (MFPE) is investigated. This newly developed mathematical model is characterised with a time-, scale-dependent dispersivity. A two-dimensional finite volume quadrilateral mesh method (FVQMM) based on a quadrilateral background interpolation mesh is developed for analysing the model. The FVQMM transforms the coupled non-linear partial differential equations into a system of differential equations, which is solved using backward differentiation formulae of order one through five in order to advance the solution in time. Three examples are presented to demonstrate the model verification and utility. Henry's classic benchmark problem is used to show that the MFPE captures significant features of transport phenomena in heterogeneous porous media including enhanced transport of salt in the upper layer due to its parameters that represent the dependence of transport processes on scale and time. The time and scale effects are investigated. Numerical results are compared with published results on the some problems.

Effective modeling of beams with shear deformations on elastic foundation

  • Gendy, A.S.;Saleeb, A.F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.607-622
    • /
    • 1999
  • Being a significant mode of deformation, shear effect in addition to the other modes of stretching and bending have been considered to develop two finite element models for the analysis of beams on elastic foundation. The first beam model is developed utilizing the differential-equation approach; in which the complex variables obtained from the solution of the differential equations are used as interpolation functions for the displacement field in this beam element. A single element is sufficient to exactly represent a continuous part of a beam on Winkler foundation for cases involving end-loadings, thus providing a benchmark solution to validate the other model developed. The second beam model is developed utilizing the hybrid-mixed formulation, i.e., Hellinger-Reissner variational principle; in which both displacement and stress fields for the beam as well as the foundation are approxmated separately in order to eliminate the well-known phenomenon of shear locking, as well as the newly-identified problem of "foundation-locking" that can arise in cases involving foundations with extreme rigidities. This latter model is versatile and indented for utilization in general applications; i.e., for thin-thick beams, general loadings, and a wide variation of the underlying foundation rigidity with respect to beam stiffness. A set of numerical examples are given to demonstrate and assess the performance of the developed beam models in practical applications involving shear deformation effect.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

쉘구조 해석을 위한 개선된 Degenerated 쉘유한요소 (Improved Degenerated Shell Finite Elements for Analysis of Shell Structures)

  • 최창근;유승운
    • 전산구조공학
    • /
    • 제3권1호
    • /
    • pp.97-107
    • /
    • 1990
  • 본 연구에서는 쉘구조물의 해석을 위한 개선된 degenerated 쉘유한요소를 제시하였다. 본 연구의 개선된 degenerated 쉘요소는 shear locking 해결에 우수한 결과를 보인 가정된 전단변형도를 사용하고, membrane locking 현상을 제거하기 위해 평면내 변형도의 구성시 감차적분을 행하며, 쉘요소자체의 거동을 보완하기위해 비적합 변위형을 선택적으로 추가하였다. 본 요소는 기존 degenerated 요소계열에서 가장 큰 문제점중의 하나인 locking 현상과 전달가능한 거짓영에너지모드가 발생하지 않으며, 조각시험도 통과한다. 본 개선된 쉘요소의 거동을 알아보기위해 다수의 예제시험을 행하였다. 수치시험결과 본 요소는 빠른 수렴성과 안정성을 보여준다.

  • PDF

The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions

  • Shojaee, S.;Rostami, S.;Moeinadini, A.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.211-229
    • /
    • 2011
  • In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom (SDOF) systems. In the proposed approach, a straightforward formulation was derived from the approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is demonstrated with four examples. The results were compared with those from the numerical methods such as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy exactly like the Linear Acceleration method. But its power point is that its time consumption is notably less than the Linear Acceleration method especially in the nonlinear analysis.