This paper proposes to synthesize facial images from a few parameters for the pose and the expression of their constituent components. This parameterization makes the representation, storage, and transmission of face images effective. But it is difficult to parameterize facial images because variations of face images show a complicated nonlinear manifold in high-dimensional data space. To tackle this problem, we use an LLE (Locally Linear Embedding) technique for a good representation of face images, where the relationship among face images is preserving well and the projected manifold into the reduced feature space becomes smoother and more continuous. Next, we apply a snake model to estimate face feature values in the reduced feature space that corresponds to a specific pose and/or expression parameter. Finally, a synthetic face image is obtained from an interpolation of several neighboring face images in the vicinity of the estimated feature value. Experimental results show that the proposed method shows a negligible overlapping effect and creates an accurate and consistent synthetic face images with respect to changes of pose and/or expression parameters.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.11
/
pp.2569-2575
/
2015
Network RTK generally uses a linear interpolation method by using the corrections from reference stations. This minimizes the spatial decorrelation error caused by the increase of distance between the reference station's baseline and user's baseline. However, tropospheric delay, a function of the meteorological data can cause a spatial decorrelation characteristic among reference stations within a network by local meteorological difference. A non-linear characteristic of tropospheric delay can deteriorate Network RTK performance. In this paper, the modeling of tropospheric delay irregularity is made from the data when the typhoon is occurred. By using this modeling, analyzing the effect of meteorological difference between reference stations on correction is performed. Finally, we analyze an effect of non-linear characteristics of tropospheric delay among reference stations to Network RTK user.
Purpose: Tragus is one of the key structure of the normal shape of auricle. We experienced several cases of hypoplastic tragus with preauricular appendage. This article describes the methods of reconstruction of atypical tragus using accessory tragus or macrotragus to make better aesthetic results rather than simple excision. Methods: From April, 2004 to March, 2009, 21 patients got operations by our method. Seven patients had bilateral deformity of tragus. Mean age was 12.7 years. For 17 cases of accessory tragus, simple excision, z-plasty and interpolation flap was performed. For 11 cases of macrotragus, debulking and z-plasty was performed. Mean follow-up period was 9.4 months. Results: Reconstructed tragus looked symmetric with the opposite side in contour, size, direction and partial coverage of auditory meatus. There was no enlargement of remnant appendage for the follow up period and there was no complication such as hematoma, infection and chondritis. Conclusion: In cases of small and deformed tragus, preauricular tissue such as accessory tragus and macrotragus could be a good source of tragal reconstruction.
An increase in heavy rainfall and floods have been observed over South Korea due to recent abnormal weather. In this perspective, the high-resolution weather forecasts have been widely used to facilitate flood management. However, these models are known to be biased due to initial conditions and topographical conditions in the process of model building. Theretofore, a bias correction scheme is largely applied for the practical use of the prediction to flood management. This study introduces a new mean field bias correction (MFBC) approach for the high-resolution numerical rainfall products, which is based on a Bayesian Kriging model to combine an interpolation technique and MFBC approach for spatial representation of the error. The results showed that the proposed method can reliably estimate the bias correction factor over ungauged area with an improvement in the reduction of errors. Moreover, it can be seen that the bias corrected rainfall forecasts could be used up to 72 hours ahead with a relatively high accuracy.
In this paper, we propose an automatic prostate segmentation technique using image intensity and gradient information. Our method is composed of four steps. First, rays at regular intervals are generated. To minimize the effect of noise, the start and end positions of the ray are calculated. Second, the profiles on each ray are sorted based on the gradient. And priorities are applied to the sorted gradient in the profile. Third, boundary points are extracted by using gradient priority and intensity distribution. Finally, to reduce the error, the extracted boundary points are corrected by using B-spline interpolation. For accuracy evaluation, the average distance differences and overlapping region ratio between results of manual and automatic segmentations are calculated. As the experimental results, the average distance difference error and standard deviation were 1.09mm $\pm0.20mm$. And the overlapping region ratio was 92%.
The camera motion is accompanied with the translation and/or the rotation of objects in frames of a video sequence. An unnecessary rotation of objects declines the quality of the moving pictures and in addition is a primary cause of the viewers' fatigue. In this paper, a novel method for correcting rotated frames in video sequences is presented, where the modified Mojette transform is applied to the motion-compensated area in each frame. The Mojette transform is one of discrete Radon transforms, and is modified for correcting the rotated frames as follows. First, the bin values in the Mojette transform are determined by using pixels on the projection line and the interpolation of pixels adjacent to the line. Second, the bin values are calculated only at some area determined by the motion estimation between current and reference frames. Finally, only one bin at each projection is computed for reducing the amount of the calculation in the Mojette transform. Through the simulation carried out on various test video sequences, it is shown that the proposed scheme has good performance for correcting the rotation of frames in moving pictures.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.578-578
/
2015
동아시아 지역의 대부분은 몬순의 영향으로 인해 수자원의 계절적 변동성이 크며 이로 인해 홍수 및 가뭄이 빈번하게 발생하고 있다. 기후변화에 따른 기온과 강수량의 변화는 수자원의 변동성을 더욱 악화시킬 수 있으며, 수재해 피해를 더욱 가중시킬 것으로 전망되고 있다. 본 연구에서는 기후변화에 따른 동아시아 지역의 기온 및 강수량의 변화를 전망하고, 그 특성을 분석하고자 한다. 이를 위해 CMIP5의 핵심실험인 2개 RCP시나리오(RCP4.5, RCP8.5)에 대한 다수의 GCMs 결과를 이용하였다. 구축한 기후시나리오를 이중선형보간법(bilinear interpolation)을 이용하여 공간적으로 상세화하였으며, Delta method를 이용하여 편의보정을 수행하였다. GCM 모의자료의 편의를 산정하기 위해 관측자료는 APHRODITE의 기온 및 강수량 자료를 이용하였다. GCM에 따라 차이가 나지만, 우리나라의 경우 평균적으로 100~300mm 정도 과소모의 되는 것으로 나타났다. 미래 기온 및 강수량 전망을 위해 과거기간은 1976~2005년, 미래기간은 2021~2050년(2040s), 2061~2090년(2070s)으로 구분하였다. 우리나라의 경우 RCP 4.5 하에서 연평균기온은 $1.4{\sim}1.7^{\circ}C$(2040s), $2.2{\sim}3.4^{\circ}C$(2070s) 정도 상승할 것으로 나타났으며, 연평균 강수량은 4.6~5.3% (2040s), 8.4~10.5% (2070s) 정도 증가할 것으로 나타났다. RCP 8.5에서는 연평균 기온은 RCP4.5에 비해 상승폭이 더 컸으며, 강수량은 유사한 결과가 나타났다. 또한, 동아시아 지역에서도 연평균 기온이 상승하고 연평균 강수량은 증가하는 것으로 나타났다. 다만, 지역별로 계절별 기온 및 강수량이 매우 다른 양상으로 나타났다. 이는 동아시아 지역과 같이 계절별 강수량 발생패턴이 다른 지역에서는 홍수 및 가뭄에 매우 중요한 역할을 할 것이다. 따라서 지역적으로 계절별 강수량의 변화를 분석해야 할 것으로 판단되며, 추후 유출량 모의를 기반으로 홍수 및 가뭄의 영향을 직접적으로 분석해야할 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.120-120
/
2019
국내에서는 예측 불가능한 재난으로 인한 침수 피해 발생사례가 증가하였다. 따라서 침수 피해 예측이 더욱 중요해지고 있는 실정이다. 기존에는 주로 수치모형을 통한 침수예측을 하였고, 정보통신기술도 발달해왔지만 아직까지 수치모의에 많은 시간이 소요되기 때문에 침수 피해의 실시간 예측이 힘든 상황이다. 이에 국립재난안전연구원(2017)에서 침수예측을 위한 보간 모델인 SIND(Scientific Interpolation for Natural Disaster) Model을 개발하였다. 이는 보간을 이용한 모델이기 때문에 그동안 사용해왔던 물리 모형보다 간단하다. 그러나 정확한 값이 아닌 보간을 이용한 모델이기 때문에 정확도를 검토할 필요가 있다. 따라서 본 연구에서는 Mapping분야에서 사용하는 CRITIC(CRiteria Importance Through Intercriteria Correlation) 기법을 활용하여 지도의 정확도 검토를 수행하였다. CRITIC은 형상기준, 위치기준, 면적기준을 이용하여 형상유사도를 산정하는 방법이며, 이 기법을 활용하여 국가가 제공한 침수예상도(국립해양조사원, 2010)와 SIND모델 결과 지도를 비교하였다. 형상기준은 지도의 형상을 나타내는 형상지수를 비교하고, 위치기준은 지도의 무게중심의 일치정도, 면적기준은 형상 면적을 비교하는 것이다. 지도는 총 300여개의 매칭 객체 쌍을 가지고 수행하였고, 위험도 등급은 Grade 1부터 Grade 5 까지 분류하여 나타내었다. 연구 대상지역은 ${{\bigcirc}{\bigcirc}}$시이다. 그 결과, 형상유사도는 약 200여개의 매체쌍이 0.80 이상의 값을 나타냈고, 나머지 매체 쌍은 0.75이하의 값을 나타내었다. 위험도 등급이 낮을수록 형상유사도 값은 크게 나타나고, 위험도 등급이 높을수록 형상유사도 값이 작게 나타나는 경향을 보였다. 이는 위험도 등급이 높은 곳의 경우, 해안선의 복잡한 지형형태 때문으로 판단된다. Mapping 분야에서 형상유사도 적합성 기준이 0.75이므로 결과는 60%이상이 정확하다고 판단할 수 있다. 따라서 본 연구에서 검토를 수행했던 간단한 방정식을 이용한 SIND 모델은 정확하다고 판단할 수 있다. 다만, 복잡한 지형과 현재 고려되고 있는 영향인자 외에 다양한 구조물 등을 고려한다면 형상유사도가 향상될 것이라 기대된다.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.20
no.12
/
pp.136-144
/
2021
The purpose of this study was to develop and verify a precision transmission error measurement system for a gear pair. The transmission error measurement system of the gear pair was developed as a measurement unit, signal processing unit, and signal analysis unit. The angular displacement for calculating the transmission error of the gear pair was measured using an encoder. The signal amplification, interpolation, and transmission error calculation of the measured angular displacement were conducted using a field-programmable gate array (FPGA) and a real-time processor. A high-pass filter (HPF) was applied to the calculated transmission error from the real-time processor. The transmission error measurement test was conducted using a gearbox, including the master gear pair. The same test was repeated three times in the clockwise and counterclockwise directions, respectively, according to the load conditions (0 - 200 N·m). The results of the gear transmission error tests showed similar tendencies, thereby confirming the stability of the system. The measured transmission error was verified by comparing it with the transmission error analyzed using commercial software. The verification showed a slight difference in the transmission error between the methods. In a future study, the measurement and analysis method of the developed precision transmission error measurement system in this study may possibly be used for gear design.
The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.