• Title/Summary/Keyword: interplanetary magnetic field

Search Result 61, Processing Time 0.023 seconds

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON;YI YU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.151-157
    • /
    • 2004
  • It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.

Magnetic Cloud and its Interplanetary Shock Sheath as a Modulator of the Cosmic Ray Intensity (우주선 Intensity 조정자로서 자기구름과 그 주위의 행성간 충격파 sheath 영역의 역할)

  • Oh, Su-Yeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.149-156
    • /
    • 2008
  • Forbush Decreases (FDs) are representative events of abrupt decrease in galactic cosmic ray intensity. They are known to be strongly associated with solar wind events such as interplanetary shock (IP shock) and magnetic cloud (MC). In order to examine effectiveness of the MC on FDs, I studied the 44 MCs that occurred during the 2 years from 1998 to 1999 and investigated the properties of interplanetary magnetic field (IMF) and solar wind. As a result, I found that 11 out of 44 MCs are associated with the FDs. In particularly, it is noted that the FDs are driven by the IP shock sheaths which are associated with over 13 nT of IMF magnitude, 3 nT of IMF turbulence, and 550km/s of solar wind speed. This result indicates that magnetic cloud and its interplanetary shock sheath work as a modulator of the cosmic ray intensity.

CLASSIFICATION OF THE INTERPLANETARY SHOCKS BY SHOCK DRIVERS

  • OH SU YEON;YI YU;NAH JA-KYUNG;CHO KYUNG-SEOK
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.151-157
    • /
    • 2002
  • From the data of solar wind observation by ACE spacecraft orbiting the Earth-Sun Lagrangian point, we selected 48 forward interplanetary shocks(IPSs) occurred in 2000, maximum solar activity period. Examining the profiles of solar wind parameters, the IPSs are classified by their shock drivers. The significant shock drivers are the interplanetary coronal mass ejection(ICME) and the high speed stream(HSS). The IPSs driven by the ICMEs are classified into shocks driven by magnetic clouds and by ejectas based on the existence of magnetic flux rope structure and magnetic field strength. Some IPSs could be formed as the blast wave by the smaller energy and shorter duration of shock drivers such as type II radio burst. Out of selected 48 forward IPSs, $56.2\%$ of the IPSs are driven by ICME, $16.7\%$ by HSS, and $16.7\%$ of the shocks are classified into blast-wave type shocks. However, the shock drivers of remaining $10\%$ of the IPSs are unidentified. The classification of the IPSs by their driver is a first step toward investigating the critical magnitudes of the IPS drivers commencing the magnetic storms in each class.

Global MHD Simulation of a Prolonged Steady Weak Southward Interplanetary Magnetic Field Condition

  • Park, Kyung Sun;Lee, Dae-Young;Kim, Khan-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2020
  • We performed high-resolution three-dimensional global magnetohydrodynamic (MHD) simulations to study the interaction between the Earth's magnetosphere and a prolonged steady southward interplanetary magnetic field (IMF) (Bz = -2nT) and slow solar wind. The simulation results show that dayside magnetic reconnection continuously occurs at the subsolar region where the magnetosheath magnetic field is antiparallel to the geomagnetic field. The plasmoid developed on closed plasma sheet field lines. We found that the vortex was generated at the magnetic equator such as (X, Y) = (7.6, 8.9) RE due to the viscous-like interaction, which was strengthened by dayside reconnection. The magnetic field and plasma properties clearly showed quasiperiodic variations with a period of 8-10 min across the vortex. Additionally, double twin parallel vorticity in the polar region was clearly seen. The peak value of the cross-polar cap potential fluctuated between 17 and 20 kV during the tail reconnection.

Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

  • Oh, Suyeon;Kim, Bogyeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

Statistical study on nightside geosynchronous magnetic field responses to interplanetary shocks

  • Park, Jong-Sun;Kim, Khan-Hyuk;Araki, Tohru;Lee, Dong-Hun;Lee, Ensang;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2012
  • When an interplanetary (IP) shock passes over the Earth's magnetosphere, the geosynchronous magnetic field strength near the noon is always enhanced, while the geosynchronous magnetic field near the midnight decreases or increases. In order to understand what determines the positive or negative magnetic field response at nightside geosynchronous orbit to sudden increases in the solar wind dynamic pressure, we have examined 120 IP shock-associated sudden commencements (SC) using magnetic field data from the GOES spacecraft near the midnight (MLT = 2200~0200) and found the following magnetic field perturbation characteristics. (1) There is a strong seasonal dependence of geosynchronous magnetic field perturbations during the passage of IP shocks. That is, the SC-associated geosynchronous magnetic field near the midnight increases (a positive response) in summer and decreases (a negative response) in winter. (2) These field perturbations are dominated by the radial magnetic field component rather than the north-south magnetic field component at nightside geosynchronous orbit. (3) The magnetic elevation angles corresponding to positive and negative responses decrease and increase, respectively. These field perturbation properties can be explained by the location of the cross-tail current enhancement during SC interval with respect to geosynchronous spacecraft position.

  • PDF

The relationship between the auroral electrojet, interplanetary magnetic field and the magnetic storm

  • 박윤경;문가희;안병호
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.80-80
    • /
    • 2003
  • 서브스톰이 진행될 때 극지방의 지자기 교란은 대류 제트 전류와 서브스톰 전류 쐐기로 구성되는 오로라 제트 전류에 기인한다. 이들은 전기장 강화를 뜻하는 AU 지수와 전기 전도도 강화를 뜻하는 AL 지수로 나타낼 수 있다. 이들 AU, AL 지수와 자기폭풍의 정도를 나타내는 Dst 지수와의 상관관계를 구해봄으로써 서브스톰이 자기폭풍의 형성에 어떻게 기여하는지 조사하였다. 이를 위하여 월별 누적 AU, 누적 │AL│ 값을 구한 뒤 월별 누적 Dst 와의 상관관계를 구하였다. 한편 IMF(Interplanetary Magnetic Field)의 남쪽 자기장 성분으로부터 지구 자기장 내에 강력한 전기장이 형성되어 자기폭풍을 형성한다는 견해가 있다. 전기장 E=V(태양풍 속도)$\times$Bs(IMF의 남쪽 자기장 성분)으로 나타낼 수 있으므로 이로부터 구한 월별 누적 전기장과 누적 Dst 값을 비교해 봄으로써 자기권 대류가 자기폭풍 형성에 어느 정도 기여하는지 조사하였다. 본 연구를 위하여 1966년부터 1987년까지 20년간의 AE(AU, AL) 지수를 이용하였으며 IMF 자료는 ACE 위성이 제공하는 행성간 자기장 자료로 1997년부터 2002년까지의 자료를 이용하였다. 본 연구의 결과는 현재 논쟁이 되고 있는 storm-substorm의 인과관계를 보다 잘 규명할 것으로 기대된다.

  • PDF

IMPACT OF THE ICME-EARTH GEOMETRY ON THE STRENGTH OF THE ASSOCIATED GEOMAGNETIC STORM: THE SEPTEMBER 2014 AND MARCH 2015 EVENTS

  • Cho, K.S.;Marubashi, K.;Kim, R.S.;Park, S.H.;Lim, E.K.;Kim, S.J.;Kumar, P.;Yurchyshyn, V.;Moon, Y.J.;Lee, J.O.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.2
    • /
    • pp.29-39
    • /
    • 2017
  • We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm ($Dst_{min}{\sim}-75nT$) driven by the X1.6 high speed flare-associated CME ($1267km\;s^{-1}$) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm ($Dst_{min}{\sim}-223nT$) caused by a CME with moderate speed ($719km\;s^{-1}$) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long-duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.

Multi-Observations of Magnetic Cloud

  • Sung, Suk-Kyung;Marubashi, Katsuhide;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • The geometry of an MC (magnetic cloud) in the interplanetary space can be estimated by the magnetic flux rope model. But the single point observation in the interplanetary space near the Earth is scanty to comprehend the global configuration of MC because the MC is considered a huge loop extending from the Sun with both legs rooted on the Sun. If the MC is observed at two different locations sufficiently far away from each other, it may provide the global configuration of the MC. In this study, we model the MC which is observed two different locations using a simple straight cylinder model. The MC model fit parameters are the flux rope axis orientation (${\Theta}$, ${\phi}$), the intensity of the magnetic field at the flux rope axis ($B_0$), the radius of the MC ($R_0$), and the impact parameter (p), etc. With the MC model fit parameters we look into the difference between two observed MC geometries and also calculate the magnetic flux and helicity of the MC.

  • PDF

Storm Sudden Commencements Without Interplanetary Shocks

  • Park, Wooyeon;Lee, Jeongwoo;Yi, Yu;Ssessanga, Nicholas;Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism - Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than -30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.