Browse > Article
http://dx.doi.org/10.5303/JKAS.2004.37.4.151

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK  

OH SU YEON (Department of Astronomy & Space Science, Chungnam National University)
YI YU (Department of Astronomy & Space Science, Chungnam National University)
Publication Information
Journal of The Korean Astronomical Society / v.37, no.4, 2004 , pp. 151-157 More about this Journal
Abstract
It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.
Keywords
Solar wind; interplanetary shocks; magnetic cloud; interplanetary magnetic field; geomagnetic storms;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Webb, D. F., Cliver, E. W., Crooker, N. U., St. Cyr, O. C., & Thompson, B. J. 2000, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms, J. Geophys. Res., 105, 7491-7508   DOI
2 Watari, S., & Watanabe, T. 1998, The solar drivers of geo-magnetic disturbances during solar minimum, Geophys. Res. Lett., 25, 2489-2492   DOI   ScienceOn
3 St. Cyr, 0. C., Howard, R. A., Jr. Sheeley, N. R., Plun kett, S. P., Michels, D. J., Paswaters, S. E., Koomen, M. J., Simnett, G. M., Thompson, B. J., Gurman, J. B., Schwenn, R., Webb, D. F., Hildner, E., & Lamy, P. L. 2000, Properties of Coronal Mass Ejections: SOHO LASCO Observations from January 1996 to June 1998, J. Geophys. Res., 105, 18169-18186   DOI
4 Temerin, M. & Xinlin, Li, 2002, A new model for the prediction of Dst on the basis of the solar wind, J. Geophys.Res., 107, 1472   DOI
5 Tsurutani, B. T., Gonzalez, W. D., Tang, F., & Lee, Y. Te. 1992, Great magnetic storms, Geophys. Res. Lett., 19, 73-76   DOI
6 Tsurutani, B. T., Gonzalez, W. D., Gonzalez, Alicia L. C., Tang, Frances, Arballo, John K., & Okada, Masaki 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100, 21717-21734   DOI
7 Tsurutani, B. T., & Gonzalez, W. D. 1997, The interplanetary causes of magnetic storms-A review in Magnetic storms, Geophys. Monogr. Ser., vol. 98, pp. 73-76
8 Lepping, R. P., Berdichevsky, D. B., Burlaga, L. F., Lazarus, A. J., Kasper, J., Desch, M. D., Wu, C.-C., Reames, D. V., Singer, H. J., Smith, C. W., & Ackerson, K. L. 2001, The Bastille day Magnetic Clouds and Upstream Shocks: Near-Earth Interplanetary Observations, Solar Phys., 204, 285-303   DOI   ScienceOn
9 Lindsay, G. M., Russell, C. T., Luhmann, J. G., & Gazis, P. 1994, On the sources of interplanetary shocks at 0.72 AU, J. Geophys. Res., 99, 11-17   DOI
10 Luhmann, J. G., 1995, Sources of interplanetary shocks, Adv. Space Res., 15, 355-364   DOI   ScienceOn
11 Oh, S. Y., Yi, Y., Nah, J. K., & Cho, K. S. 2002, Classification of the interplanetary shocks by shocks drivers, J. Korean Astron. Soc., 35, 151-157   DOI   ScienceOn
12 Burlaga, L. F., Slittler, E., Mariani, F., & Schwenn, R. 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations, J. Geophys. Res., 86, 6673-6684   DOI
13 Gonzalez, W. D., & Tsurutani, B. T. 1987, Criteria of interplanetary parameters causing intense magnetic storms (Dst<-100nT), Planet. Space Sci., 35, 1101-1109   DOI   ScienceOn
14 Jurac, S., Kasper, J. C., Richardson, J. D., & Lazarus, A. J. 2002, Geomagnetic disturbances and their relationship to interplanetary shock parameters, Geophys. Res. Lett., 29, pp.101-1   DOI
15 Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasylinunas, V. M. 1994, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771-5792   DOI
16 Gosling, J. T., McComas, D. J., Philps, J. L., & Bame S. J. 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831-7839   DOI