• Title/Summary/Keyword: internal pressure load

Search Result 244, Processing Time 0.027 seconds

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성)

  • You, Jang-Youl;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

Burst Test and Finite Element Analysis for Failure Pressure Evaluation of Nuclear Power Plant Pipes (원전 배관 손상압력 평가를 위한 파열시험 및 유한요소해석)

  • Yoon, Min Soo;Kim, Sung Hwan;Kim, Taesoon
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.144-149
    • /
    • 2015
  • This study aims to quantitatively evaluate failure pressure of wall-thinned elbow under combined load along with internal pressure, by conducting real-scale burst test and finite element analysis together. For quantitative evaluation, failure pressure data was extracted from the real-scale burst test first, and then finite element analysis was carried out to compare with the test result. For the test, the wall-thinning defect of the extrados or intrados inside the center of 90-degree elbow was considered and the loading modes to open or close the specimen maintaining a certain load or displacement were applied. Internal pressure was applied until failure occurred. As a result, when the bending load was applied under the load control condition, the intrados of the defect was more affected by failure pressure than the extrados, and the opening mode was more vulnerable to failure pressure than the closing mode. When the bending load was applied under the displacement control, it was hardly affected by failure pressure though it was slightly different from the defect position. The result of the finite element analysis showed a similar aspect with the test. Moreover, when major factors such as material properties and pipeline thickness were calibrated to accurate values, the analytical results was more similar to the test results.

Plastic Limit Loads for Through-Wall Cracked Pipes Using 3-D Finite Element Limit Analyses (3차원 유한요소 한계해석을 이용한 관통균열 배관의 소성한계하중)

  • Huh Nam-Su;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.568-575
    • /
    • 2006
  • The present paper provides plastic limit load solutions of axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly-plastic behavior. As a loading condition, axial tension, global bending moment, internal pressure, combined tension and bending and combined internal pressure and bending are considered for circumferential through-wall cracked pipes, while only internal pressure is considered for axial through-wall cracked pipes. Especially, more emphasis is given for through-wall cracked pipes subject to combined loading. Comparisons with existing solutions show a large discrepancy in short through-wall crack (both axial and circumferential) for internal pressure. In the case of combined loading, the FE limit analyses results show thickness effect on limit load solutions. Furthermore, the plastic limit load solution for circumferential through-wall cracked pipes under bending is applied to derive plastic $\eta\;and\;{\gamma}$-factor of testing circumferential through-wall cracked pipes to estimate fracture toughness. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be meaningful fur structural integrity assessment of through-wall cracked pipes.

Evaluating on the Effects of Circumferential Thinning Angle and Bending Load on the Failure Pressure of Wall-Thinned Elbow through Burst Tests (파열 시험을 통한 감육곡관의 손상압력에 미치는 원주방향 결함 폭과 굽힘하중의 영향 평가)

  • Kim, Jin-Weon;Na, Yeon-Soo;Lee, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.14-19
    • /
    • 2006
  • This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.

Effect of Bend Angle on Plastic Loads of Pipe Bends Under Internal Pressure and In-Plane Bending (내압과 굽힘하중을 받는 곡관의 소성 하중에 굽힘 각도가 미치는 영향)

  • Lee, Kuk-Hee;Oh, Chang-Sik;Yoo, Bong;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.322-330
    • /
    • 2007
  • This paper quantifies the effect of a bend angle of a pipe bend on plastic loads, via small strain and large strain FE limit analyses using elastic-perfectly plastic materials. To consider the effect of the attached straight pipe, two limiting cases are considered. One case corresponds to the pipe bend without the attached straight pipe, and the other to that with a sufficiently long attached straight pipe. For the former case, the FE results suggest that the limit load is not affected by the bend angle for both in-plane bending and internal pressure. For the latter case, however, the bend angle affects plastic loads. An interesting finding is that the plastic load smoothly changes from the limit load of the straight pipe when the bend angle approaches zero to the plastic load of the $90^{\circ}$ pipe bend when the bend angle approaches 90 degree. Based on such observations, closed-form plastic load solutions are proposed for the pipe bend with an arbitrary bend angle under in-plane bending and internal pressure.

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

Plastic Limit Loads of 90° Elbows with Local Wall Thinning using Small Strain FE Limit Analyses (I) - Internal Pressure - (소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 한계하중 (I) - 내압 -)

  • An, Joong-Hyok;Kim, Jong-Hyun;Hong, Seok-Pyo;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.586-593
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbow with local wall thinning at extrados under internal pressure. This work was performed using 3-dimensional, small strain FE analyses based on elastic-perfectly plastic materials. The wide range of elbow and local wall thinning geometries are considered. For systematic analyses for effect of axial thinning extent on limit loads, two limiting cases are considered; a sufficiently long thinning, and the circumferential part-through surface crack. Then, the closed-form plastic limit load solutions for intermediate thinning are obtained by using result of two limiting cases. The effect of axial thinning extent for elbow on plastic limit load is highlighted by comparing with that for straight pipes. Although the proposed limit load solutions are developed for the case when local wall thinning exist in the center of elbow, it is also shown that they can be applied to the case when local wall thinning exists anywhere within elbow.

Correlation of internal and external pressures and net pressure factors for cladding design

  • Bodhinayake, Geeth G.;Ginger, John D.;Henderson, David J.
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • Net pressures on roofs and walls of buildings are dependent on the internal and external pressure fluctuations. The variation of internal and external pressures are influenced by the size and location of the openings. The correlation of external and internal pressure influences the net pressures acting on cladding on different parts of the roof and walls. The peak internal and peak external pressures do not occur simultaneously, therefore, a reduction can be applied to the peak internal and external pressures to obtain a peak net pressure for cladding design. A 1:200 scale wind tunnel model study was conducted to determine the correlations of external and internal pressures and effective reduction to net pressures (i.e., net pressure factors, FC) for roof and wall cladding. The results show that external and internal pressures on the windward roof and wall edges are well correlated. The largest ${\mathcal{C}}_{{\check{p},net}$, highest correlation coefficient and the highest FC are obtained for different wind directions within 90° ≤ θ ≤ 135°, where the large openings are on the windward wall. The study also gives net pressure factors FC for areas on the roof and wall cladding for nominally sealed buildings and the buildings with a large windward wall opening. These factors indicate that a 5% to 10% reduction to the action combination factor, KC specified in AS/NZS 1170.2(2011) is possible for some critical design scenarios.

A Study on the Characteristics of Internal Dynamic Pressure of Vane Pump (베인 펌프의 내부 비정상 압력특성에 관한 연구)

  • 정석훈;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.79-84
    • /
    • 1998
  • This paper presents the experimental study of the dynamic internal pressure within a vane pump. The measurement of the dynamic internal pressure acting on the line contact between the vane and the camring in a vane pump with intravanes have been investigated. The variations of the radial acting force of a vane are calculated from previously measured results of dynamic internal pressure in four chambers surrounding a vane, and the variations of the film thickness are estimated in both the rotational speed ranges from 600 to 1200 rpm and the delivery pressure ranges from 1 to 14 MPa. The experimental technic has been established to obtain the data for performance analysis, such as reaction forces between vane and camring, friction wear at the contact regions, leakage characteristics and net forces upon the pump shaft in case of the unsteady load which is forced to the intravane pressure balance type vane pump.