This study investigates the influence of sintering temperature on the magnetic properties and frequency dispersion of the complex permeability of Ni-Zn-Cu ferrites used for magnetic shielding in near-field communication (NFC) systems. Sintered specimens of $(Ni_{0.7}Zn_{0.3})_{0.96}Cu_{0.04}Fe_2O_4$ are prepared by conventional ceramic processing. The complex permeability is measured by an RF impedance analyzer in the range of 1 MHz to 1.8 GHz. The real and imaginary parts of the complex permeability depend sensitively on the sintering temperature, which is closely related to the microstructure, including grain size and pore distribution. In particular, internal pores within grains produced by rapid grain growth decrease the permeability and increase the magnetic loss at the operating frequency of NFC (13.56 MHz). At the optimized sintering temperature ($1225-1250^{\circ}C$), the highest permeability and lowest magnetic loss can be obtained.
본 논문에서는 열화학적 분해 및 열기계학적 변형이 고려된 구성 방정식을 사용하여 다공성 탄소/페놀릭 복합재료의 열탄성 거동을 예측하였다. 다공성 복합재료의 온도 의존성 및 열화학적 분해 과정에서의 기공도, 분해 가스에 의한 기공 압력, 재료의 수축을 고려하였다. 기공도와 기공 압력이 고려된 대표 체적 요소 모델의 유한요소 해석을 통해 산출된 거시적 기공 탄성 계수를 구성 방정식에 적용하였다. 간단한 수치 실험을 통해 기공탄성 계수가 다공성 재료의 열탄성 거동에 미치는 영향을 분석하였으며, 재료 내부에 형성된 기공과 기공 압력에 의한 응력 구배 및 변형을 확인하였다.
The magnetocaloric effect (MCE), which is the reversible temperature change of magnetic materials due to an applied magnetic field, occurs largely in the vicinity of the magnetic phase transition temperature. This phenomenon can be used to induce magnetic refrigeration, a viable, energy-efficient solid-state cooling technology. Recently, Metal-organic frameworks (MOFs), due to their structural diversity of tunable crystalline pore structure and chemical functionality, have been studied as good candidates for magnetic refrigeration materials in the cryogenic region. In cryogenic cooling applications, MCE using MOF can have great potential, and is even considered comparable to conventional lanthanum alloys and magnetic nanoparticles. Owing to the presence of large internal pores, however, MOF also exhibits the drawback of low magnetic density. To overcome this problem, therefore, recent reports in literature that achieve high magnetic entropy change using a dense structure formation and ligand tuning are introduced.
한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
/
pp.294-300
/
1999
After researching the physical properties of the concrete included Rice Husk Ash(RHA concrete) and workability of fresh concrete admixed RHA, we have tested durability of RHA-concrete against freeaing and thawing in the winter using rapid freezing and thawing test method(KS F 2456) . There aretwo hypotheses to explain the failure mechanism of a freezing and thawing action. First, the hydraulic pressure in the pores of freezing concrete make an internal stress of concrete structures outbreaking micro crack in the face of concrete, Second, Frost action causing damage to cement paste repeatedly come from soil frost action, freezing water in the capillaries. Initial Relative Dynamic Modulus of Elasticity (DME) was biggest in cae of unit binder weight 600kgf/㎥ and relative dynamic modulus of elasticity increased until 300cycles. In general , initial relative DME was proportional to unit binder weight . Relative DME was decreased in proportion to unit binder weight in the case of 300, 400, 500kgf/㎥ , but relative DME fo the others remained more than 90% until 300 cycles. It was not good effect of intermixed RHA to concrete in case of below unit binder weight 300kgf/㎥ and the resistance of freezing and thawing was not good either.
This study is to investigate experimentally residual strength properties of the high strength concrete containing the hybrid of nylon and polypropylene fiber at elevated temperature. Test results showed that specimens heated up to $300^{\circ}C$ exhibited similar strength properties to the one at room temperature. This result is significantly different from previous studies. but specimens heated over $400^{\circ}C$ showed dramatic decrease indicating similar tendency. For the residual strength properties, one at $300^{\circ}C$ even increased 10%, which is also different from previous studies, but it significantly decreased in $400^{\circ}C$ as widely expected. Melted pores by organic fibers in concrete specimens was observed with FE-SEM. For the density of concrete in elevated temperature, internal system in $200^{\circ}C$ had even denser than in $20^{\circ}C$, but was collapsed in $400^{\circ}C$.
Low carbon steels were oxidized isothermally at 1050 and $1180^{\circ}C$ for 4 hr in air in order to determine the effect of alloying elements Si, S, Cu, Sn, and Ni on oxidation. For oxidation resistance of low carbon steels, the beneficial elements were Si, Cu, and Ni, whereas the harmful elements were S and Sn. The most active alloying element, Si, was scattered inside the oxide scale, at the scale-alloy interface, and as an internal oxide precipitate. The relatively noble elements such as Cu and Ni tended to weakly segregate at the scale-alloy interface. Sulfur and Sn were weakly, uniformly distributed inside the oxide scale. Excessively thick, non-adherent scales containing interconnected pores formed at $1180^{\circ}C$.
The present study fabricated polyvinyl alcohol (PVA) fiber-reinforced alkali-activated slag/fly ash (AASF) composites with varying mixture ratios of slag and fly ash. The thermomechanical behaviors of the AASF composites exposed to 200, 400, 600, or 800℃ were evaluated by means of compressive strength test, visual observation, and fire resistance tests. X-ray diffractometry, mercury intrusion porosimetry, and thermogravimetry tests were performed to analyze the microstructure change of the AASF composites upon exposure to high temperatures. Specimens exhibited a gradual strength loss up to 600℃, while also showing a significant decrease in the strength above 600℃. The fire resistance test revealed the occurrence of an inflection point as indicated by an increase in the internal temperature at around 200℃. In addition, specimens showed the dehydration of C-S-H gel, the presence of åkermanite, gehlenite, and anorthite upon exposure to 800℃, which is associated with the formation of macropore population with pores having diameters of 1-3 ㎛ and 20-40 ㎛. Visual observation indicated that the PVA fibers mitigated the cracking and/or spalling of the specimens upon exposure to 800℃.
Soft soil ground is a crucial factor limiting the development of the construction of transportation infrastructure in coastal areas. Soft soil is characterized by low strength, low permeability and high compressibility. However, the ordinary treatment method uses Portland cement to solidify the soft soil, which has low early strength and requires a long curing time. Microbially induced carbonate precipitation (MICP) is an emerging method to address geo-environmental problems associated with geotechnical materials. In this study, a method of bio-cementitious mortars consisting of MICP and cement was proposed to stabilize the soft soil. A series of laboratory tests were conducted on MICP-treated and cement-MICP-treated (C-MICP-treated) soft soils to improve mechanical properties. Microscale observations were also undertaken to reveal the underlying mechanism of cement-soil treated by MICP. The results showed that cohesion and internal friction angles of MICP-treated soft soil were greater than those of remolded soft soil. The UCS, elastic modulus and toughness of C-MICP-treated soft soil with high moisture content (50%, 60%, 70%, 80%) were improved compared to traditional cement-soil. A remarkable difference was observed that the MICP process mainly played a role in the early curing stage (i.e., within 14 days) while cement hydration continued during the whole process. Micro-characterization revealed that the calcium carbonate filling the pores enhanced the soft soil.
In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.
플라이 애쉬와 고로슬래그를 함유하고 물-결합재비가 낮은 고성능 콘크리트의 자기건조에 의한 습도감소와 수축과의 연관성을 파악하기 위하여 내부 습도와 변형률을 측정하였다. 그 결과 일반 콘크리트 내부 습도 감소는 약 10% 수축변형률은 약 $320{\times}10^{-6}$까지 진행하였으며 플라이 애쉬 10%, 20% 혼입한 콘크리트의 경우 각각 10%, 7%의 습도 감소와 $274{\times}10^{-6}$, $231{\times}10^{-6}$의 변형률을 나타내었다. 고로슬래그 40%, 50%를 혼입한 콘크리트는 11%, $371{\times}10^{-6}$, O30G50은 11%, $350{\times}10^{-6}$의 습도감소와 수축 변형률을 나타내었으며 플라이 애쉬 혼입 콘크리트는 일반 콘크리트에 비해 습도 감소량과 변형률이 감소하며 고로슬래그 혼입 콘크리트는 증가하는 경향을 보였다. 자기수축의 경우 내부 습도와 변형률의 관계만을 고려할 때 플라이 애쉬, 고로슬래그 혼입 유무에 상관없이 모두 습도와 변형률은 강한 선형성을 보였다. 콘크리트 내부 습도 변화와 수축변형률의 관계를 보다 구체화하기 위하여 콘크리트 내부 공극을 단일 네트워크로 가정하고 확장 메니스커스 생성 가정 하에 공극수에서 발생하는 모세관 압력과 수화조직체에서 발생하는 표면에너지 변화를 습도의 함수로 모델링하여 수축의 구동력으로 작용시킨 결과 실험값과 비교적 일치하는 값을 나타내었다. 이를 근거로 물-결합재비가 낮은 고성능 콘크리트에서 자기건조에 의한 습도감소는 20nm이하의 소형공극에서 발생함을 파악할 수 있었으며 따라서 자기수축에 대한 제어 방안은 이러한 소형공극에서의 공극수 표면장력과 포화도에 초점을 맞추어야 함을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.