Browse > Article
http://dx.doi.org/10.12989/acc.2021.11.1.011

Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures  

Kim, J.S. (Department of Civil and Environmental Engineering, Korean Advanced Institute of Science and Technology)
Lee, H.K. (Department of Civil and Environmental Engineering, Korean Advanced Institute of Science and Technology)
Publication Information
Advances in concrete construction / v.11, no.1, 2021 , pp. 11-18 More about this Journal
Abstract
The present study fabricated polyvinyl alcohol (PVA) fiber-reinforced alkali-activated slag/fly ash (AASF) composites with varying mixture ratios of slag and fly ash. The thermomechanical behaviors of the AASF composites exposed to 200, 400, 600, or 800℃ were evaluated by means of compressive strength test, visual observation, and fire resistance tests. X-ray diffractometry, mercury intrusion porosimetry, and thermogravimetry tests were performed to analyze the microstructure change of the AASF composites upon exposure to high temperatures. Specimens exhibited a gradual strength loss up to 600℃, while also showing a significant decrease in the strength above 600℃. The fire resistance test revealed the occurrence of an inflection point as indicated by an increase in the internal temperature at around 200℃. In addition, specimens showed the dehydration of C-S-H gel, the presence of åkermanite, gehlenite, and anorthite upon exposure to 800℃, which is associated with the formation of macropore population with pores having diameters of 1-3 ㎛ and 20-40 ㎛. Visual observation indicated that the PVA fibers mitigated the cracking and/or spalling of the specimens upon exposure to 800℃.
Keywords
alkali-activated material; slag; fly ash; PVA fiber; temperature;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sahmaran, M., Ozbay, E., Yucel, H.E., Lachemi, M. and Li, V.C. (2011), "Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures", J. Mater. Civil Eng., 23(12), 1735-1745. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000335.   DOI
2 Saridemir, M., Severcan, M., Ciflikli, M., Celikten, S., Ozcan, F. and Atis, C. (2016), "The influence of elevated temperature on strength and microstructure of high strength concrete containing ground pumice and metakaolin", Constr. Build. Mater., 124, 244-257. https://doi.org/10.1016/j.conbuildmat.2016.07.109.   DOI
3 Seo, J.H., Bae, S.J., Jang, D.I., Park, S.M., Yang, B.J. and Lee, H.K. (2020), "Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement", Cement Concrete Compos., 106, 103462. https://doi.org/10.1016/j.cemconcomp.2019.103462.   DOI
4 Shaikh, F. and Taweel, M. (2015), "Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures", Adv. Concrete Constr., 3(4), 283-293. http://dx.doi.org/10.12989/acc.2015.3.4.283.   DOI
5 Turker, H.T., Balcikanli, M., Durmus, L.H., Ozbay, E. and Erdemir, M. (2016), "Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level", Constr. Build. Mater., 104, 169-180. https://doi.org/10.1016/j.conbuildmat.2015.12.070.   DOI
6 Alonso, C. and Fernandez, L. (2004), "Dehydration and rehydration processes of cement paste exposed to high temperature environments", J. Mater. Sci., 39(9), 3015-3024. https://doi.org/10.1023/B:JMSC.0000025827.65956.18.   DOI
7 Yoon, H.N., Park, S.M. and Lee, H.K. (2018), "Effect of MgO on chloride penetration resistance of alkali-activated binder", Constr. Build. Mater., 178, 584-592. https://doi.org/10.1016/j.conbuildmat.2018.05.156.   DOI
8 Zhao, R. and Sanjayan, J.G. (2011), "Geopolymer and Portland cement concretes in simulated fire", Mag. Concrete Res., 63(3), 163-173. https://doi.org/10.1680/macr.9.00110.   DOI
9 Ada, M., Sevim, B., Yuzer, N. and Ayvaz, Y. (2018), "Assessment of damages on a RC building after a big fire", Adv. Concrete Constr., 6(2), 177. http://dx.doi.org/10.12989/acc.2018.6.2.177.   DOI
10 Ahn, Y.B., Jang, J.G. and Lee, H.K. (2016), "Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures", Cement Concrete Compos., 72, 27-38. https://doi.org/10.1016/j.cemconcomp.2016.05.028.   DOI
11 Bangi, M.R. and Horiguchi, T. (2012), "Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures", Cement Concrete Res., 42(2), 459-466. https://doi.org/10.1016/j.cemconres.2011.11.014.   DOI
12 Belouadah, M., Rahmouni, Z.E.A. and Tebbal, N. (2018), "Effects of glass powder on the characteristics of concrete subjected to high temperatures", Adv. Concrete Constr., 6(3), 311. http://dx.doi.org/10.12989/acc.2018.6.3.311.   DOI
13 Bernal, S.A., Provis, J.L., Walkley, B., San Nicolas, R., Gehman, J.D., Brice, D.G., Kilcullen, A.R., Duxson, P. and van Deventer, J.S. (2013), "Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation", Cement Concrete Res., 53, 127-144. https://doi.org/10.1016/j.cemconres.2013.06.007.   DOI
14 Flower, D.J. and Sanjayan, J.G. (2007), "Green house gas emissions due to concrete manufacture", Int. J. Life Cycle Assess., 12(5), 282. https://doi.org/10.1065/lca2007.05.327.   DOI
15 Celikten, S., Saridemir, M. and Deneme, I.O. (2019), "Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature", Constr. Build. Mater., 217, 50-61. https://doi.org/10.1016/j.conbuildmat.2019.05.055.   DOI
16 Cheng, X., Dong, Q., Ma, Y., Zhang, C., Gao, X., Yu, Y., Wen, Z., Zhang, C. and Guo, X. (2019), "Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures", Constr. Build. Mater., 228, 116747. https://doi.org/10.1016/j.conbuildmat.2019.116747.   DOI
17 Chore, H. and Joshi, M. (2015), "Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials", Adv. Concrete Constr., 3(3), 223. http://dx.doi.org/10.12989/acc.2015.3.3.223.   DOI
18 Ezziane, M., Kadri, T., Molez, L., Jauberthie, R. and Belhacen, A. (2015), "High temperature behaviour of polypropylene fibres reinforced mortars", Fire Saf. J., 71, 324-331. https://doi.org/10.1016/j.firesaf.2014.11.022.   DOI
19 Ezziane, M., Molez, L., Jauberthie, R. and Rangeard, D. (2011), "Heat exposure tests on various types of fibre mortar", Eur. J. Environ. Civil Eng., 15(5), 715-726. https://doi.org/10.1080/19648189.2011.9693360.   DOI
20 Guerrieri, M., Sanjayan, J. and Collins, F. (2010), "Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures", Mater. Struct., 43(6), 765-773. https://doi.org/10.1617/s11527-009-9546-3.   DOI
21 Lee, N., Koh, K., An, G. and Ryu, G. (2017), "Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures", Ceram. Int., 43(2), 2471-2480. https://doi.org/10.1016/j.ceramint.2016.11.042.   DOI
22 Haha, M.B., Le Saout, G., Winnefeld, F. and Lothenbach, B. (2011), "Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags", Cement Concrete Res., 41(3), 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016.   DOI
23 Haha, M.B., Lothenbach, B., Le Saout, G. and Winnefeld, F. (2012), "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part II: Effect of Al2O3", Cement Concrete Res., 42(1), 74-83. https://doi.org/10.1016/j.cemconres.2011.08.005.   DOI
24 Handoo, S., Agarwal, S. and Agarwal, S. (2002), "Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures", Cement Concrete Res., 32(7), 1009-1018. https://doi.org/10.1016/S0008-8846(01)00736-0.   DOI
25 Kim, M.S., Jun, Y., Lee, C. and Oh, J.E. (2013), "Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag", Cement Concrete Res., 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011.   DOI
26 Lee, N., Khalid, H.R. and Lee, H.K. (2016), "Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment", Microporous Mesoporous Mater., 229, 22-30. https://doi.org/10.1016/j.micromeso.2016.04.016.   DOI
27 Park, S.M., Seo, J.H. and Lee, H.K. (2018), "Thermal evolution of hydrates in carbonation-cured Portland cement", Mater. Struct., 51(1), 7. https://doi.org/10.1617/s11527-017-1114-7.   DOI
28 Mendes, A., Sanjayan, J. and Collins, F. (2008), "Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures", Mater. Struct., 41(2), 345. https://doi.org/10.1617/s11527-007-9247-8   DOI
29 Pan, Z., Tao, Z., Cao, Y., Wuhrer, R. and Murphy, T. (2018), "Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature", Cement Concrete Compos., 86, 9-18. https://doi.org/10.1016/j.cemconcomp.2017.09.011.   DOI
30 Park, S.M., Jang, J.G., Lee, N.K. and Lee, H.K. (2016), "Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures", Cement Concrete Res., 89, 72-79. https://doi.org/10.1016/j.cemconres.2016.08.004.   DOI
31 Provis, J.L., Palomo, A. and Shi, C. (2015), "Advances in understanding alkali-activated materials", Cement Concrete Res., 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013.   DOI
32 Rovnanik, P., Bayer, P. and Rovnanikova, P. (2013), "Characterization of alkali activated slag paste after exposure to high temperatures", Constr. Build. Mater., 47, 1479-1487. https://doi.org/10.1016/j.conbuildmat.2013.06.070.   DOI
33 Rashad, A., Bai, Y., Basheer, P., Collier, N. and Milestone, N. (2012), "Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature", Cement Concrete Res., 42(2), 333-343. https://doi.org/10.1016/j.cemconres.2011.10.007.   DOI
34 Rashad, A.M. and Zeedan, S.R. (2011), "The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load", Constr. Build. Mater., 25(7), 3098-3107. https://doi.org/10.1016/j.conbuildmat.2010.12.044.   DOI
35 Rashad, A.M., Sadek, D.M. and Hassan, H.A. (2016), "An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures", J. Clean. Prod., 112, 1086-1096. https://doi.org/10.1016/j.jclepro.2015.07.127.   DOI