• Title/Summary/Keyword: internal parameter

Search Result 528, Processing Time 0.028 seconds

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

Study on the Dynamic Torsional Instability of a Thin Beam (비틀림 하중을 받는 얇은 빔의 동적 불안정성에 관한 연구)

  • 박진선;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.185-190
    • /
    • 1995
  • In recent years, many researcher have been interested in the stability of a thin beam. Among them, Pai and Nayfeh[1] had investigated the nonplanar motion of the cantilever beam under lateral base excitation and chaotic motion, but this study is associated with internal resonance, i.e. one to one resonance. Also Cusumano[2] had made an experiment on a thin beam, called Elastica, under bending loads. In this experiment, he had shown that there exists out-of-plane motion, involving the bending and the torsional mode. Pak et al.[3] verified the validity of Cusumano's experimental works theoretically and defined the existence of Non-Local Mode(NLM), which is came out due to the instability of torsional mode and the corresponding aspect of motions by using the Normal Modes. Lee[4] studied on a thin beam under bending loads and investigated the routes to chaos by using forcing amplitude as a control parameter. In this paper, we are interested in the motion of a thin beam under torsional loads. Here the form of force based on the natural forcing function is used. Consequently, it is found that small torsional loads result in instability and in case that the forcing amplitude is increasing gradually, the motion appears in the form of dynamic double potential well, finally leads to complex motion. This phenomenon is investigated through the poincare map and time response. We also check that Harmonic Balance Method(H.B.M.) is a suitable tool to calculate the bifurcated modes.

  • PDF

Evaluation of Water Quality in the Keum River using Statistics Analysis (통계분석 기법을 이용한 錦江水系의 水質評價)

  • Kim, Jong-Gu
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1281-1289
    • /
    • 2002
  • This study was conducted to evaluate water quality in the Keum River using multivariate analysis. The analysis data in Keum river made use of surveyed data by the ministry of environment from January 1994 to December 2001. Thirteen water quality parameter were determined on each sample. The results was summarized as follow; Water quality in the Keum River could be explained up to 71.39% by four factors which were included in loading of organic matter and nutrients by the tributaries (32.88%), seasonal variation (16.09%), loading of pathogenic bacteria by domestic sewage of Gapcheon (13.39%) and internal metabolism in estuary as lakes(9.03%). For spatial variation of factor score, four group was classified by each factor characterization. Station 1 and 2 was influenced by Daechung dam, station 3 was affected by domestic sewage of Gapcheon, station 10~12 was affected by estuary dyke and the rest station. The result of cluster analysis by station was classified into four group that has different water quality characteristics. In monthly cluster analysis, three group was classified according to seasonal characteristic. Also, in yearly cluster analysis, three group was classified. It is necessary to control the pollutant loadings by Gapcheon inflow domestic sewage in Daejeon city for the sake of water quality management of Keum river.

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

Impact of Duty Cycle in Wireless Sensor Networks (무선 센서 네트워크에서 Duty Cycle의 영향)

  • Sthapit, Pranesh;Pyun, Jae-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.854-857
    • /
    • 2008
  • Wireless sensor consists of an internal power source which has limited life time. Several MAC protocols have exploited scheduled sleep/listen cycles to conserve energy in sensor networks. Duty cycle is a user-adjustable parameter in low duty cycle MAC protocols, which determines the length of the sleep period in a frame. The sire of duty cycle has direct effect on the Performance of MAC Protocols. In this Paper, we simulated TEEM (A Traffic Aware, Energy Efficient MAC) and S-MAC in NS-2 with different duty cycle values and analyze how duty-cycle effects on the performance and energy consumption of both the protocols.

  • PDF

Consideration of Constraint Effect of Surface Cracks Under PTS Conditions Using J-Q Approach (PTS 사고하에서 J-Q해석법을 이용한 표면균열의 구속효과 고찰)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In recent years, the integrity of reactor Pressure Vessel(RPV) under pressurized thermal shock (PTS) accident has been treated as one of the most critical issues. Under PTS condition, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. As a result, cracks on inner surface of RPV may experience elastic-plastic behavior which can be characterized by J-integral. In such a case, however, J-integral may possibly lose its vapidity due to the constraint effect. The degree of constraint effect is influenced by the loading mode, crack geometry and material properties. In this paper, in order to investigate the effect of clad thickness and crack geometry on constraint effect, three dimensional finite element analyses were performed for various surface cracks. Total of 27 crack geometries were analyzed and results were presented by a two-parameter characterization based on the J-integral and the f-stress.

Engineering Estimation of Elastic-Plastic Fracture Parameter for Circumferential Surface Cracked Pipes: Part II (배관 원주방향 표면균열에 대한 탄소성 파괴 파라미터의 예측 (II))

  • Kim, Yun-Jae;Kim, Jin-Su;Kim, Young-Jin;Park, Yun-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.310-315
    • /
    • 2001
  • This paper provides validations of the reference stress based J and $C^*$ estimations, proposed in Part I, for inner, circumferential surface cracked pipes under internal pressure and global bending against detailed 3-D elastic-plastic and elastic-creep FE results. For this purpose, actual tensile properties of two typical stainless steels (TP304 and TP316) are used for elastic-plastic FE analyses and two realistic creep laws are used for elastic-creep FE analyses. For a total of twenty cases considered in this paper, agreements between the proposed reference stress based J and $C^*$ estimations and the FE results are excellent. More important aspect of the proposed estimations is that they can be used to estimate J and $C^*$ not only at the deepest point of the surface crack but also at an arbitrary point along the crack front.

  • PDF

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.