• Title/Summary/Keyword: internal magnetic field

Search Result 113, Processing Time 0.024 seconds

Vortex Dynamics of Superconducting Flux Flow Transistor in a Channel (채널부분의 초전도 자속 흐름 트랜지스터 볼텍스 동력학)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.546-549
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a Matlab program.

  • PDF

Calculation of Inrush Current of a Transformer using FEM (유한요소법에 의한 변압기의 돌입전류 계산)

  • 이준호;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.64-70
    • /
    • 1999
  • The inrush current of transformer can flow when the overvoltage caused by surge or external faults is applied. In this paper, an algorithm for the calculation of this inruch current is proposed. The capacitances of windings are precalculated by using 3 dimensional FEM and are appended to circuit of the transformer. And transient characteristics of the transformer are analyzed by axisymmetric FEM which is coupled magnetic field of transformer and circuit of transformer. When a transformer encounters abnormal voltage, using the proposed method, internal magnetic field of transformer, voltages and currents of windings are calculated.

  • PDF

Evaluation of Surface and Sub-surface defects in Railway Wheel Using Induced Current Focused Potential Drops (집중유도 교류 전위차법을 이용한 철도차량 차륜의 표면과 내부 결함 평가)

  • Lee, Dong-Hyung;Kwon, Seok-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.1-6
    • /
    • 2007
  • Railway wheels in service are regularly checked by ultrasonic testing, acoustic emission and eddy current testing method and so on. However, ultrasonic testing is sometimes inadequate for sensitively detecting the cracks in railway wheel which is mainly because of the fact of crack closure. Recently, many researchers have actively fried to improve precision for defect detection of railway wheel. The development of a nondestructive measurement tool for wheel defects and its use for the maintenance of railway wheels would be useful to prevent wheel failure. The induced current focusing potential drop(ICFPD) technique is a new non-destructive tasting technique that can detect defects in railway wheels by applying on electro-magnetic field and potential drops variation. In the present paper, the ICFPD technique is applied to the detection of surface and internal defects for railway wheels. To defect the defects for railway wheels, the sensor for ICFPD is optimized and the tests are carried out with respect to 4 surface defects and 6 internal defects each other. The results show that the surface crack depth of 0.5 mm and internal crack depth of 0.7 mm in wheel tread could be detected by using this method. The ICFPB method is useful to detect the defect that initiated in the tread of railway wheels

Design and Fabrication of Flexible Thin Multilayered Planar Coil for Micro Electromagnetic Induction Energy Harvester (초소형 전자기 유도방식 에너지 하베스터용 연성 박막 다적층 평판 코일 설계 및 제작)

  • Park, Hyunchul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.601-606
    • /
    • 2016
  • In this paper, an energy harvester is developed that has advantages regarding piezoelectric noise minimization, mass production, and an easily available environmental energy source, electromagnetic induction, as well as low-frequency bandwidth and high amplitude. A process for fabricating a three-dimensional multilayered planar coil using micro-electro-mechanical systems (MEMS) on a flexible printed circuit board FPCB is introduced. Optimal shape and size were calculated via internal resistance and inductance, and a prototype was fabricated through the MEMS procedure while considering the possibility of mass production. Although the internal resistance matched the designed value, the electromotive force generated did not reach the intended amount. The main reason for the decrease in efficiency was the low area of coil outskirt exposed to the magnetic field while there was relative motion between the magnet and the coil.

Electric Field Effect on Numerical Dosimetry for Wireless Power Transfer System (무선전력전송의 조사량 평가 시 전기장 영향)

  • Park, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • The coupling effect of electric fields incident on the biological object is investigated in regards to dosimetry for a wireless power transfer(WPT) system using electromagnetic resonance phenomenon. The internal electric fields induced a biological sphere model exposed to a magnetic dipole are calculated with the finite-difference time-domain(FDTD) method considering both incident electric and magnetic fields, the impedance method considering only incident magnetic fields, and theoretical analysis. The results represent that the electric coupling effect on a biological object nearby the WPT system should be considered to conduct exact dosimetry.

A study on the deposition of DLC thin films by using an FCVA technique (FCVA 방법에 의한 DLC 박막의 제작에 관한 연구)

  • Lee, Hae-Seung;Uhm, Hyun-Seok;Kim, Jong-Kuk;Choi, Byoung-Ryong;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1379-1382
    • /
    • 1997
  • Diamond-like carbon(DLC) thin films are produced by using a filtered cathodic vacuum arc(FCVA) deposition system. Different magnetic components, namely steering, focusing, and filtering plasma-optic systems, are used to achieve a stable arc plasma and to prevent the macroparticles from incorporating into the deposited films. Effects of magnetic fields on plasma behavior and film deposition are examined. The carbon ion energy is found to be varied by applying a negative (accelerating) substrate bias voltage. The deposition rate of DLC films is dependent upon magnetic field as well as substrate bias voltage and at a nominal deposition condition is about $2{\AA}/s$. The structural properties of DLC films, such as internal stress, relative fraction of tetrahedral($sp^3$) bonds, and surface roughness have also been characterized as a function of substrate bias voltages and partial gas($N_2$) pressures.

  • PDF

Design of External Coil System for Reducing Artifact of MR Image due to Implantable Hearing Aid (이식형 보청기에 의한 자기공명 영상의 인공음영 축소를 위한 외부 코일 시스템 설계)

  • Ahn, Hyoung Jun;Lim, Hyung-Gyu;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.375-385
    • /
    • 2016
  • Recently, several implantable hearing aids such as cochlear implant, middle ear implant, etc., which have a module receiving power and signal from outside the body, are frequently used to treat the hearing impaired patients. Most of implantable hearing aids are adopted permanent magnet pairs to couple between internal and external devices for the enhancement of power transmission. Generally, the internal device which containing the magnet in the center of receiving coil is implanted under the skin of human temporal bone. In case of MRI scanning of a patient with the implantable hearing aid, however, homogeneous magnetic fields of the MRI might be interfered by the implanted magnet. For the above reasons, the MR image is degraded by large area of artifact, so that diagnostics are almost impossible in deteriorated region. In this paper, we proposed an external coil system that can reduce the artifact of MR image due to the internal coupling magnet. By finite element analysis estimating area of MR artifact according to varying current and shape of the external coil, optimal coil parameters were extracted. Finally, the effectiveness of the proposed external coil system was verified by confirming the artifact at real MRI scan.

Computation of Radar Cross Section from Arbitrarily Shaped Composite Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 임의 형태 복합구조의 레이더 단면적 산출)

  • 한상호;정백호;윤희상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we present a new combined field integral equation (CFIE) formulation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional perfectly conducting and piecewise homogeneous dielectric composite body. The conducting/dielectric structures are approximated by planar triangular patches, which have the ability to conform to any geometrical surface. The surface covering the conducting body is replaced by an equivalent surface electric current and the surface of the dielectric by equivalent electric and magnetic currents. The all equivalent currents are approximated in terms of RWG (Rao, Wilton, Glisson) functions. The objective of this paper is to illustrate that the CFIE is a valid methodology in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results are presented and compared with solutions obtained using other formulations.

The Comparison of Output Characteristic by the Electro-magnetic Structure Modification of the Axial Flux Type Permanent Magnet Synchronous Generator (종축 자속형 영구자석 동기 발전기의 전자기적 구조 변경에 따른 출력특성 비교)

  • Jung, Tae-Uk;Bae, Byung-Duk;Kim, Hoe-Cheon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • Generally, the structure without the stator core Axial Field Permanent Magnet (AFPM) generator was simple and there was nearly no cogging toque. And because it had the wide driving rate area, it had been being mainly used in the small wind power generation system. However, AFPM generator with non-slotted stator can't generate high voltage at low wind speed due to long air-gap. It is the reason of output efficiency drop. Therefore, in this paper, the AFPM synchronous generator with internal rotor and dual slotted stators for the small wind turbine is studied, and deal with a cogging torque minimization through the determination of optimum pole-arc ratio.

Investigation of the Convergence Behavior with Fluctuation Features in the Fourier Modal Analysis of a Metallic Grating

  • Kim, Hwi;Park, Gwanwoo;Kim, Changsoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.196-202
    • /
    • 2012
  • We observe that the transmission and reflection efficiencies of a one-dimensional metallic grating under transverse-magnetic illumination calculated using the Fourier modal method (FMM) with the Fourier factorization rules have peculiar fluctuations, albeit small in magnitude, as the number of field harmonics increases. It is shown that when the number of Fourier terms for the electromagnetic field is increased from that in the conventional FMM, the fluctuations due to non-convergent highly evanescent eigenmodes can be eliminated. Our examination reveals that the fluctuations originate from the Gibbs phenomenon inherent in the Fourier-series representation of a permittivity function with discontinuities, and from non-convergence of highly evanescent internal Bloch eigenmodes.