• Title/Summary/Keyword: internal heat distribution

Search Result 165, Processing Time 0.022 seconds

Temperature Rise Prediction of GIS Bus Bar Considering Thermal Flow (열유동을 고려한 GIS 모선의 온도상승 예측)

  • Kim, Joong-Kyoung;Oh, Yeon-Ho;Lee, Ji-Yeon;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.742-747
    • /
    • 2009
  • Many works on the temperature distribution of power apparatus have usually done by coupled magneto-thermal analysis. Such a method can not consider the internal gas or oil flow in the power apparatus such as gas insulated switchgear, GIS bus bar, and power transformer. Moreover it can not show the internal temperature distribution of the power apparatus exactly. This paper proposes a coupled magneto-thermal-flow analysis considering Navier-Stokes equations. The convection heat transfer coefficient is calculated analytically by applying Nusselt number for natural convection and is applied to the boundary condition of proposed method. Temperature distribution of the GIS bus bar model considering thermal flow is obtained by the proposed method and shows good agreement with the experimental data.

A Numerical Analysis on the Transient Heat Transfer in a Heat Exchanger Pipe Flow

  • Chang, Keun-Sun;Kweon, Young-Chel;Jin, Seong-Ryung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2000
  • Numerical results are presented for the 2-dimensional turbulent transient heat transfer of the shell/tube heat exchanger with a step change of the inlet temperature in the primary side. Heat transfer boundary conditions outside the pipe are given partially by the convection heat transfer conditions and partially by insulated conditions. Calculation results were obtained by solving the unsteady two-dimensional elliptic forms for the Reynolds-averaged governing equations for the mass, momentum and energy. Finite-difference method was used to obtain discretization equations, and the SIMPLER solution algorithm was employed for the calculation procedure. Turbulent model used is the algebraic model proposed by Cebeci-Smith. Results presented include the time variant Nusselt number distribution, average temperature distribution and outlet temperatures for the various inlet temperatures and flow rates.

  • PDF

Influences of Wearing Different Thermal Insulated Clothings on Thermoregulatory Responses from $25^{\circ}C$ Environment to 18$^{\circ}C$ Environment ($25^{\circ}C$환경에서 $18^{\circ}C$환경으로 노출시 보온력이 상이한 의복의 착용이 체온조절 반응에 미치는 영향)

  • 이종민
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.826-832
    • /
    • 1998
  • In order to understand the influences of wearing clothings with different thermal insula-tions when men were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, thermoregulatory responses were measured on 4 healthy female college students. Subjects rested wearing T-shirts, trousers, and socks called LC(total weight 541g) at 25$\pm$1$^{\circ}C$, 50$\pm$5% R.H. and then exposed to the room conditioned in 18$\pm$1$^{\circ}C$, 50$\pm$5$^{\circ}C$ R.H. with LC as it was(LC Type) or with T-shirts, trousers, socks, training wear upper garment, the training wear lower garment called HC (total weight 1368g)(HC Type) for 120 min. The results can be summarized as follows: 1) When subjects were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, decrease of rectal temperature was significantly smaller in LC Type than in HC Type. 2)Increase of heat production and weight loss had no significant difference between two types of clothing. 3)Internal thermal conductance was higher in HC Type and external thermal conductance was higher in LC Type. Therefore total thermal conductance was higher in LC Type than in HC Type. 4)Decrease of skin temperature was greater in LC Type than in HC Type. 5)Subjects felt colder with LC Type than with HC Type, but did not feel differently in comfort sensation between two types of clothing. It was suggested that less decrease of rectal temperature in LC type inspite of more dry heat loss from body might be ascribed to a shift of blood from the shell area to the core area originating in the vasoconstriction and the lowered internal thermal conductance. In conclu-sion, the importance of the state of internal heat distribution in the homeostasis seemed to be reaffirmed.

  • PDF

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Thermal Distribution Analysis in Nano Cell OLED (나노 셀 OLED의 열 분포 해석)

  • Kyung-Uk Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.309-313
    • /
    • 2024
  • The key to determining the lifetime of OLED device is how much brightness can be maintained. It can be said that there are internal and external causes for the degradation of OLED devices. The most important cause of internal degradation is bonding and degradation in the excited state due to the electrochemical instability of organic materials. The structure of OLED modeled in this paper consists of a cathode layer, electron injection layer (EIL), electron transport layer (ETL), light emission layer, hole transport layer (HTL), hole injection layer (HIL), and anode layer on a glass substrate from top to bottom. It was confirmed that the temperature generated in OLED was distributed around the maximum of 343.15 K centered on the emission layer. It can be seen that the heat distribution generated in the presented OLED structure has an asymmetrically high temperature distribution toward the cathode, which is believed to be because the sizes of the cathode and positive electrode are asymmetric. Therefore, when designing OLED, it is believed that designing the structures of the cathode and anode electrodes as symmetrically as possible can ensure uniform heat distribution, maintain uniform luminance of OLED, and extend the lifetime. The thermal distribution of OLED was analyzed using the finite element method according to Comsol 5.2.

A Study on the Imfluence of the Pipe Line of Boiler for Flame Distribution of Combustion Furnace (연소로의 화염분포가 보일러 관로에 미치는 영향에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1435-1441
    • /
    • 2014
  • The fire took place in the synthetic heat transfer fluid boiler used in production process of medium density fiberboard. This study investigated pressure distribution of the first, second and third passes and the temperature in the fire burner. The boiler's internal fluid is unsteady due to the out of order inverter. As the operation continues, the flame's flow and speed are unsteady. The synthetic heat transfer fluid leak spouted about 120kg/min in the form of vapor in the early period of the fire. The flame extended to the second and third passes. The highest temperature of the second and third pass is $1059^{\circ}C$ and $1007^{\circ}C$, respectively. The synthetic heat transfer fluid spouted through the cracked part of the fire box in the first pass and accumulated on the turn table. Therefore, it is expected that the temperature of the interior of the fire box is above $1200^{\circ}C$. The temperature of the burner rises to a maximum level several times in a short period. On account of that, several explosions occur in the fire burner. Pressure distribution at steady state in combustion furnace is 2~5mAq and pressure distribution at inverter under fault condition in combustion furnace is 10~-53mAq. The decrement of coil thickness measurement for synthetic heat transfer fluid boiler is 0~5mm.

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.

Effects of the Internal Structure on the Distribution Performance of a Refrigerant Distributor (냉매분배기 분배성능에 미치는 내부 형상인자의 영향)

  • Kim, Dong-Hwi;Sa, Yong-Gheol;Chung, Baikyoung;Park, Byung-Duck
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • The distribution performance of refrigerant distributors in air conditioner evaporators was examined numerically and experimentally. Internal flow analysis of the distributor by CFD found that the distance from the socket to the cone, the angle of the cone and the base area of the cone were the most important factors affecting refrigerant distribution ability and vortex creation. To enhance distribution performance, two distributors with improved internal structures were designed. To test these new structures, distribution performance was also analyzed by CFD and an empirical experiment was carried out using the water-nitrogen. Experimental results on the distribution fraction of each distributor hole showed a good agreement with the results of the CFD analysis. Thus, the new design of the distributors enhanced distribution performance of the refrigerant distributors.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

TRANSIENT THERMOELASTIC STRESS ANALYSIS OF A THIN CIRCULAR PLATE DUE TO UNIFORM INTERNAL HEAT GENERATION

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2020
  • The present work aims to analyzed the transient thermoelastic stress analysis of a thin circular plate with uniform internal heat generation. Initially, the plate is characterized by a parabolic temperature distribution along the z-direction given by T = T0(r, z) and perfectly insulated at the ends z = 0 and z = h. For times t > 0, the surface r = a is subjected to convection heat transfer with convection coefficient hc and fluid temperature T. The integral transform method used to obtain the analytical solution for temperature, displacement, and thermal stresses. The associated thermoelastic field is analyzed by making use of the temperature and thermoelastic displacement potential function. Numerical results are carried out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures.