• Title/Summary/Keyword: internal energy

Search Result 2,171, Processing Time 0.03 seconds

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

An Energy-Efficient Matching Accelerator Using Matching Prediction for Mobile Object Recognition

  • Choi, Seongrim;Lee, Hwanyong;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.251-254
    • /
    • 2016
  • An energy-efficient object matching accelerator is proposed for mobile object recognition based on matching prediction scheme. Conventionally, vocabulary tree has been used to save the external memory bandwidth in object matching process but involved massive internal memory transactions to examine each object in a database. In this paper, a novel object matching accelerator is proposed based on matching predictions to reduce unnecessary internal memory transactions by mitigating non-target object examinations, thereby improving the energy-efficiency. Experimental results show a 26% reduction in power-delay product compared to the prior art.

A Study on the I-V and I-P Characteristics for Optimized Operation of PEMFC (고분자 전해질형 연료전지의 최적운전을 위한 전압-전류, 전류-전력 특성 연구)

  • Jung, You-Ra;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • Fuel cell as a renewable energy source is clean and has a lot of advantages. The source can solve energy crisis and environmental problems such as greenhouse effect, air pollution and the ozone layer destruction. This paper introduces hybrid system(hydro-Genius Professional, heliocentris) of solar cell and fuel cell. Also, this paper shows the I-P, V-I characteristics of fuel cells which are connected in parallel and series. From these results, we also found the maximum power was transferred at 0.5[${\Omega}$]. The terminal voltage was also decreased according to the current because of the internal resistance. The power transfer in series was two times than that in parallel.

Characteristic Comparison on Internal Cushion Devices at High-speed Pneumatic Cylinders (고속 공기압 실린더 내장용 쿠션기구의 특성 비교)

  • Kim, Dotae;Zhang, Zhong Jie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.24-30
    • /
    • 2013
  • This paper studies the comparative analysis on two different internal cushion devices (the types of needle and relief valve) used to absorb the energy which is generated when the pneumatic cylinder moves with the load at meter-out speed control system. The effect at varying the piston velocity under same driving condition is mainly investigated. The simulation results on pressure in the cushion chamber and the dynamic behavior of the relief valve type cushion device are compared with the needle valve type. Design and performance are improved with the cushion configuration of better quality at high-speed pneumatic cylinder. Based on the relation between absorbed energy and impact energy at cushion process, cushion performance at pneumatic cylinder is evaluated.

ASYMPTIOTIC BEHAVIOR FOR THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH AN INTERNAL TIME-VARYING DELAY TERM

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.399-412
    • /
    • 2016
  • In this paper, we study the viscoelastic Kirchhoff type equation with the following nonlinear source and time-varying delay $$u_{tt}-M(x,t,{\parallel}{\nabla}u(t){\parallel}^2){\Delta}u+{\int_{0}^{t}}h(t-{\tau})div[a(x){\nabla}u({\tau})]d{\tau}\\+{\parallel}u{\parallel}^{\gamma}u+{\mu}_1u_t(x,t)+{\mu}_2u_t(x,t-s(t))=0.$$ Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the uniform decay rate of the Kirchhoff type energy.

A study on Motion Characteristics of VLCO by Draft (Simple floating body) (가변진동수주장치의 흘수변화에 따른 운동특성연구 (단일 부유체))

  • Lee, Seung-Chul;Bae, Sung-Yong
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.16-21
    • /
    • 2014
  • The structure of the variable liquid column oscillator(VLCO) is analogous to that of the tuned liquide column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. VLCO is the technology to absorb high potential energy made by process of accelerated motions to occur the effect of an air spring by installation of inner air chamber. So, the application of VLCO can obtain to improve efficiency of energy than wave energy converters made in Pelamis Company. In this research, the experiments were carried out for the motion characteristics of simple floating body by varying the amount of internal fluid. The experimental results were compared with the calculated results.

An experimental study on motions of a VLCO for wave power generation(1. Simple floating body) (파력발전용 가변수주진동장치의 운동에 대한 실험적 연구(1. 단일 부유체))

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.103-107
    • /
    • 2013
  • The structure of a variable liquid column oscillator(a VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system absorbing high kinetic energy of accelerated motions of multiple floating bodies in the effect of air springs occurred by installation of inner air chambers. Thus, VLCO can improve the efficiency of energy than wave energy converters of the activating object type made in Pelamis Company. In this research, the experiment was performed that a simple floating body was filled with internal fluid of same draft. The characteristics of motions were evaluated in each case of the opening or closing of the upper valves.

Shape Effect of Inlet Nozzle and Draft Tube on the Performance and Internal Flow of Cross-Flow Hydro Turbine

  • Choi, Young-Do;Son, Sung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.351-357
    • /
    • 2012
  • Small hydropower is a reliable energy technology to be considered for providing clean electricity generation. Producing electrical energy by small hydropower is the most efficient contribution to renewable energy. Cross-flow turbine is adopted primarily because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the effect of inlet nozzle shape on the performance and internal flow of a cross-flow turbine for small hydropower by CFD analysis. Moreover, the shape effect of draft tube has been investigated according to modified shapes of the length and the diffuse angle. The results show that relatively narrow and converging inlet nozzle shape gives better effect on the performance of the turbine.

Optimal Design of Solvent Recovery Process with Dividing Wall Column for Film Making Process (분리벽형 증류탑을 적용한 필름공정의 폐용매 회수공정 최적설계)

  • Lee, Seung-Hyun;Zo, Moon-Shin;Lee, Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1209-1214
    • /
    • 2006
  • This paper presents an application of Dividing Wall Column(DWC) to the recovery of the waste solvent from the film making processes. The waste solvent feed contains MEK(Methyl-Ethyl-Ketone), Toluene, Cyclohexanone, and water. The commercial software $HYSYS^{TM}$ was used for rigorous simulation and analysis. Sensitivity analysis for several major design variables were carried out to achieve the optimal design of the process. Distribution of the internal vapor and liquid flows to the prefractionator and main sections is shown to be the most dominant design factor for energy saving efficiency in the DWC process. The simulation results also show that the solvent recovery process using the DWC significantly improves both the energy efficiency and the compactness of the solvent recovery process.

Internal Flow and Performance Characteristics According to the Runner Gap of a Francis Turbine Model (프란시스 수차 모델의 러너 간극에 따른 내부유동 및 성능 특성)

  • KIM, SEUNG-JUN;CHOI, YOUNG-SEOK;CHO, YONG;CHOI, JONG-WOONG;HYUN, JUNG-JAE;JOO, WON-GU;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.3
    • /
    • pp.328-336
    • /
    • 2020
  • In the Francis turbine, the leakage flow through the runner gaps which are between the runner and the stator structure influences the internal flow and hydraulic performance. Thus, the investigation for the flow characteristics induced by the runner gaps is important. However, the runner gaps are often disregarded by considering the time and cost of the numerical analysis. Therefore, in this study, the flow characteristics according to runner gaps of the Francis turbine model were investigated including the leakage flow of the runner cone. The three-dimensional unsteady Reynolds-averaged Navier-Stokes analyses were conducted using a scale-adaptive simulation shear stress transport as a turbulence model for observing the influence of the leakage flow on the internal flow and hydraulic performance. The efficiencies were decreased slightly with runner gaps; and the complicated flows were captured in the gaps.