• Title/Summary/Keyword: internal bus

Search Result 109, Processing Time 0.022 seconds

Counterattack Method against Hacked Node in CAN Bus Physical Layer (CAN 버스 물리 계층에서 해킹된 노드의 대처 기법)

  • Kang, Tae-Wook;Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1469-1472
    • /
    • 2019
  • CAN bus in automotive applications does not assign node addresses. When a node is hacked and it transmits malicious data frame, it is difficult to resolve which node is hacked. However, this CAN bus internal attack seriously threatens the safety of a car, so a prompt counterattack is necessary in the CAN bus physical layer. This paper proposes a counterattack method against malicious CAN bus internal attack. When a malicious data frame is detected, an intrusion detection system in the CAN bus increases the error counter of the malicious node. Then, the malicious node is off from the bus when its error counter exceeds its limit. A CAN controller with the proposed method is implemented in Verilog HDL, and the proposed method is proved to counterattack against malicious CAN bus internal attack.

Temperature Rise Prediction of GIS Bus Bar Considering Thermal Flow (열유동을 고려한 GIS 모선의 온도상승 예측)

  • Kim, Joong-Kyoung;Oh, Yeon-Ho;Lee, Ji-Yeon;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.742-747
    • /
    • 2009
  • Many works on the temperature distribution of power apparatus have usually done by coupled magneto-thermal analysis. Such a method can not consider the internal gas or oil flow in the power apparatus such as gas insulated switchgear, GIS bus bar, and power transformer. Moreover it can not show the internal temperature distribution of the power apparatus exactly. This paper proposes a coupled magneto-thermal-flow analysis considering Navier-Stokes equations. The convection heat transfer coefficient is calculated analytically by applying Nusselt number for natural convection and is applied to the boundary condition of proposed method. Temperature distribution of the GIS bus bar model considering thermal flow is obtained by the proposed method and shows good agreement with the experimental data.

A Current Differential Relaying Algorithm for Bus Protection Using a Compensating Algorithm of Secondary Currents of CTs (변류기 전류보상 알고리즘을 이용한 모선보호용 전류 차동계전 알고리즘)

  • Gang, Yong-Cheol;Yun, Jae-Seong;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.446-450
    • /
    • 2000
  • A conventional variable percentage current differential relaying algorithm for bus protection may misoperate for external faults with severe CT saturation and internal faults with high impedance. This paper proposes a percentage differential current relaying algorithm for bus protection combined with a compensating algorithm of secondary currents of CTs. Even though CTs are saturated and their secondary currents are severely distorted, the proposed relaying algorithm does not only misoperate for external faults with CT saturation but also detects the internal faults with high fault impedance. Thus, the method improves the sensitivity of the relays and does not require any counterplan for CT saturation.

  • PDF

Investment Benefit Analysis of Safety Assessment and Inspection Technologies of Hydrogen Bus Fuel System Using Contingent Valuation Methods (조건부가치측정법을 이용한 수소버스 연료장치 안전성 평가 및 검사기술에 대한 투자 편익 분석)

  • Seohyun, Lim;Jeong Ah, Jang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2022
  • Recently, the government has been expanding the supply of hydrogen vehicles according to the roadmap for vitalizing the hydrogen economy, but is developing safety assessment and inspection technology for the relevant vehicles. This study analyzed the prevention of hydrogen bus accidents' economic effect that arises from the application and development of large-capacity CHSS oil pressure repetition-test assessment technology, hydrogen bus internal chamber pressure transmission and emission volume inspection technology, among various technologies capable of assessing the safety of a hydrogen bus fuel system. To this end, the contingent valuation method (CVM), one of the value evaluation methods of non-market goods, was applied to investigate users' willingness to pay for each inspection technology. The survey for users' willingness to pay was conducted by attaching posters to promote surveys on the internet and within buses to the entire public. As a result of the analysis, the average WTP of the hydrogen bus internal chamber pressure transmission volume inspection technology was 25.3 KRW, the average WTP of the hydrogen bus internal chamber pressure emission volume inspection technology was 18.6 KRW, and the average WTP of the large-capacity CHSS oil pressure repetition-test assessment technology was measured at 16.7 KRW. In addition, the costs and benefits of the introduction of the relevant inspection technology were defined through the interviewing of experts at related research institutions and businesses. As a result of conducting an economic analysis (4.5% discount rate) according to the development of each inspection technology, economic feasibility was seen in all assessment and inspection technologies. As much as the technology is indispensable for the safe use of hydrogen buses, it shows that investment in related technology is very necessary in the future. However, because it was decided that the relevant analysis will differ according to the distribution rate of hydrogen buses, further analysis following this future distribution rate of hydrogen buses is needed, and future users should be made clearly aware of the safety and environmental nature of the technology.

Analysis of the Internal Electrical Characteristics of Electronic Power Transformers

  • Yi, Yang;Mao, Cheng-Xiong;Wang, Dan;Lu, Ji-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.746-756
    • /
    • 2013
  • The modularized subunit of an electronic power transformer (EPT) is a series connection of two H-bridge voltage-source converters and a DC-DC converter with a high-frequency isolation transformer (HFIT). On the basis of cascading and paralleling the modularized subunits, EPT can be used in high-voltage and large-current applications in the power system. This paper discusses the steady state analysis of the modularized subunit of EPT. Theoretical analysis considers the influences of the two H-bridge voltage-source converters on the two sides of the DC-DC converter. We deduce the formulas of the theoretical calculation on the internal electrical characteristics of EPT (e.g., the voltages of the DC-bus capacitor and the primary side peak current of the HFIT). This paper provides guidance on the design and selection of EPT key elements (e.g., the DC-bus capacitors and HFIT). Experimental results are obtained from a single subunit of a laboratory model rated at 962 V, 15 kVA. All calculations, simulations, and experiments confirm the theoretical analysis of the subunit of EPT.

Physical Layer Security Method with CAN Bus Node ID Auto-Setting (CAN 버스에서 노드 ID 자동 설정을 통한 물리 계층 보안 기법)

  • Kang, Tae-Wook;Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.665-668
    • /
    • 2020
  • When a node in automotive CAN bus is hacked, such node should be blocked to prevent severe danger in the car. In order to do that, such node should be uniquely identified. However, there is no way to identify individual nodes in a CAN bus. In this paper, a physical layer security method is proposed where individual nodes are identified by assigning unique ID to the nodes during booting process. The proposed method was implemented in a CAN controller using Verilog HDL, and it is verified that the node ID auto-setting and internal attack defense are successfully performed.

A study on sensing for abnormality of BUS BAR in motor control center (모터컨트롤센터의 BUS BAR 이상 감지를 위한 실험적 연구)

  • Kim, Sung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5838-5842
    • /
    • 2011
  • The study mainly aims to explore how deterioration of motor control center, namely MCC, and vibration put impact on temperature of bus bar as well as temperature change of bolt-nut joint. The motor control center consists of three internal parts (i.e. R, S, T) which are for motor operation of high capacity. Two dimensional mechanism for measuring temperature was designed and manufactured with infrared temperature sensor. Installing it in inner motor control center enabled researcher to monitor temperature of bus bar as well as amount of change of current regularly. Temperature change of bus bar according to load was primarily examined based on a bolted joint in the experiment. It was clearly verified that temperature change of bus bar was proportional to current consumption. Therefore, installing non-contact two dimensional mechanism for measuring temperature in motor control center would be expected to prevent temperature rise owing to overload current and power outage as well as fire accident which can be triggered by poor electrical contact.

An Analysis on the Effect of Environmental Improvement on Replacing CNG Bus in Seoul with Electric Bus (서울의 CNG버스를 전기버스로 대체했을 때 환경 개선 효과 분석)

  • Choi, Byeong-Joo;Na, Hae-Joong;Choi, Uk-Don;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.821-827
    • /
    • 2020
  • In particular, vehicles with internal combustion engines of public transportation such as diesel and CNG buses are in urgent need of measures to reduce emissions as they have a long daily total mileage, long driving hours and a large number of vehicles. In this paper, the fuel consumption rate (km/kWh) was actually measured through road test of electric buses. Based on the measured values, CO2 emissions from internal combustion engines and electric buses were calculated per bus. In addition to environmental improvement effects such as the expected reduction of carbon dioxide compared to CNG buses when replacing city buses with electric buses, additional effects were analyzed when the replacement of CNG buses is expanded to electric buses.

A Study on the Electromagnetic Characteristics of a High Voltage Switchgear According to the Arrangements of Bus Bars to Improve Electrical Stabilities (고압배전반의 전기적 안정성 향상을 위한 버스바의 배치기법에 따른 전자기 특성에 관한 연구)

  • Nam, Seokho;Heo, Jeong Il;Hong, Jonggi;Kang, Hyoungku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.216-220
    • /
    • 2013
  • The rated voltage has been rising in order to minimize the losses in power transmission. The high voltage electric machines should be minimized due to the constraints of space. Therefore, the temperature of high voltage electric apparatuses easily exceeds the temperature limits. In this paper, it is investigated that how to minimize the internal temperature rising of a high voltage switchgear by adjusting the arrangement of bus bars. High voltage switchgears consist of a circuit breaker, a CT, a PT, a earthing switches, bus bars, and so on. It is very difficult to estimate the electromagnetic properties of a high voltage switchgear due to these various environments and structures. In this paper, analyses are focused on the electromagnetic characteristics of bus bars according to the arrangement method and the enclosures to simplify the electromagnetic characteristics of a switchgear. It is found that the characteristics of electric field intensity and electromagnetic losses in bus bars are influenced by the arrangement method of bus bars. However, it is confirmed that the electromagnetic characteristics of enclosures are not affected by the arrangement of bus bars. In this paper, the arrangement methods of bus bars to minimize the electric field intensity and electromagnetic losses are suggested. It is expected that the research results are helpful to design and develop an electrically reliable high voltage switchgear.

The Impact of the Bus Use Environments on Users Stress: The Case of Daejeon City (버스이용환경이 이용자의 스트레스에 미치는 영향: 대전시를 사례로)

  • LEE, Jaeyeong;PARK, Jin Hee
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.543-553
    • /
    • 2015
  • This study analyzed that the impact of the bus use environment on users' stress in each step of bus use, from accessing to leaving to transfer, in the city of Daejeon. For this, we collected the stress data from 300 users using personal interviews at the bus stops and on-board bus. Also, we used factor analysis and structural equation model method for analysis of the impact of external and internal bus environments on stress of users. The results of this study showed that the highest stress impact factor was an onboard factor(${\beta}=.416$) including 'density and crowding', 'no seat to seat' and 'low ride comfort and safe'. The next stress impact factor was transfer factor including 'insufficient transfer information', 'lack of connectivity of bus and subway' and 'uncomfort transfer route'. From the above, we recommend that bus policies need to focus on not the supplier but users and also, this user based policy need to be more specified considering the characteristics of various users such as females, the elderly, irregular users, and so on.