• Title/Summary/Keyword: internal bonding strength

Search Result 65, Processing Time 0.021 seconds

Mechanical Properties of the Oriented Strand Board (OSB) Distributed in the Korean Market

  • Eun-Chang KANG;Min LEE;Sang-Min LEE;Se-Hwi PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.253-269
    • /
    • 2023
  • Oriented strand board (OSB) distributed in Korea was collected, and its mechanical properties were investigated according to the International Organization for Standardization (ISO), Japanese Industrial Standards, and Korean Design Standard. Ten types of OSBs were collected, including six types for walls and others for floors. The thickness swelling, moisture content, and density of each product satisfied the ISO standards. All products showed lower formaldehyde emission values than those of the SE0 grade. The internal bonding strengths of all products, except products B, H, and I, met the ISO standards. However, products A, B, C, F, and H did not satisfy the thickness swelling standard of the load-bearing OSB for use in dry conditions. Products D and G showed heavy duty load-bearing OSB for use in humid conditions in terms of internal bonding and bending strength after boiling. In the nail head pull-through force and lateral nail resistance tests, all products met the standards. In terms of the structural bending performance (four points), the six types of OSBs for walls satisfied the standard for bending strength and modulus of elasticity. All the products for flooring met the standard for bending strength but, except for product G, the products did not meet the standard for modulus of elasticity. Although the results of this study cannot represent the performance of all imported OSBs, considering the above results, the water resistance performance of seven types of OSB products did not meet the standard, and 10 types of products did not match the labeling grades.

Fundamental Properties Polymer-Modified Mortars Using Re-dispersible Polymer Powder (재유화형 폴리머를 혼입한 폴리머 시멘트 모르타르의 기초적 특성)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.37-43
    • /
    • 2018
  • According to the evaluation of basic properties and mechanical characteristics of polymer cement mortars that contain re-dispersible type polymer, in the case of fresh mortars, flow and air content were increased due to the dispersion action of entrained air and surfactant with an increase of polymer addition ratio. In the case of mortars after hardening, flexural strength, bonding strength, absorption rate and carbonation resistance were improved due to the increased union and waterproof characteristics of internal structures as a result of the formation of polymer film.

Bone Replacement and Grafting with a Biologically Active Ceramic Composite

  • McGee, Thomas Donald
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • A composite of $Ca_3$(PO$_4$)$_2$ and MgAl$_2$O$_4$ spinel is biologically active and has enduring strength. Its strength depends on the spinel phase. The flaws in the spinel depend on the grain size of the calcium phosphate phase and are not altered by dissolution. The calcium phosphate, ${\alpha}$ tri-calcium phosphate, controls the tissue response. Bone bonds to the implant. A design for a bone graft as a replacement for a section of the diaphysis of a canine femur provides for tensile, compressive, torsional and bending load; and for the physiological processes of bonding and remodeling. A bone plate, used to stabilize the implant at time of surgery was removed after about one year. Over seven years of service have been achieved without internal or external fixation.

  • PDF

Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material (건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types (구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

Effect of Bacterial Cellulose Addition on the Property of Chemithermomechanical Pulp Sheet (박테리아 셀룰로오스의 첨가가 화학열기계펄프의 종이물성에 미치는 영향)

  • 조남석;최태호;서원성
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.42-48
    • /
    • 1998
  • The bacterial cellulose(BC) has many unique properties that are potentially and commercially beneficial. In order to enhance inherently inferior physical property of chemithermomechanical pulp(CTMP) sheet, chemical pulp has been used widely. Bacterial cellulose also has an enhanced sheet strength because of its unique physical and morphological features. This study was carried out to inverstigate the effect of BC addition on physical properties of CTMP sheets. The effect of BC addition on its optical properties was also discussed. The apparent density, internal bond strength, Young's modulus, tensile strength and folding endurance of CTMP sheet are increasing with increase of BC contents. This strength increase would be attributed to the increase of relative bonding sites among pulp fibers by addition of BC which has microfibrillar structure with very high specific surface areas. There were not so significant changes in opacity of CTMP sheet upto 20% addition level of BC, while over 40% addition, the opacity gradually decreased and levelled off. Porosity is decreased with addition of BC. This decrease would be attributed to densification of sheet by fine and filamentous structure of BC fibers.

  • PDF

Physical and Mechanical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polyethylene (목재 파티클과 재생폴리에틸렌을 이용한 목질복합패널의 물리·기계적 성질)

  • Han, Tae-Hyung;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.340-348
    • /
    • 2009
  • The recycled polyethylene was used for making wood-plastic composite panels. In this experiment, the sizes of wood particles used were 1/32", 1/4" and 1/2" in mesh number, and the contents of the recycled polyethylene were 10%, 30% and 50%. The physical and mechanical properties of the composite panels were investigated. At a given content of recycled polyethylene, the density of composite panel decreases with the increase of wood particle size. The thickness swelling and water adsorption decrease with the increase of recycled polyethylene, where significantly lower at 10%, compared with at 30%. In the water soaking experiment for 14 days, the dimensional stability of composite panel appeared good in the composite panel with recycled polyethylene content of 30% or higher. As the content of recycled polyethylene increases, the internal bonding strength and the modulus of rupture in bending strength increases. In SEM, the molten recycled polyethylene showed interlocking action through its penetration into tracheid openings including pits as well as binder between wood particles as the matrix material, thus increasing bonding strength and improving the physical and mechanical properties of composite panel.

Environment-Friendly Bonding of Decorative Veneer by SIS-Based Hotmelt Pressure-Sensitive Adhesives (환경친화성 SIS계 핫멜트 점착제를 이용한 무늬목 접착)

  • Lim, Dong-Hyuk;Kim, Sumin;Park, Young-Jun;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.22-29
    • /
    • 2006
  • The overlaid panels are important materials in interior and construction with added surface layers (PVC films, decorative paper, decorative veneer). Generally, the adhesive for decorative veneer to wood-based panel is urea-formaldehyde (UF) adhesive which cause the emission of formaldehyde during not only the manufacturing process, but also service life. In this study, environment-friendly SIS-based hotmelt pressure-sensitive adhesive (PSA) was evaluated as a adhesive for bonding a decorative veneer. The various SIS-based hotmelt PSA was blended as a function of diblock content, softening point of tackifier, tackifier content, and applied to bonding the decorative veneer.

Exploitation of Cationic Starches for Improving Papermaking Process and Quality of Newsprints (신문용지의 제조공정과 품질 개선을 위한 양성전분의 탐색)

  • Lee, Hak-Lae;Ryu, Hoon;Ham, Chung-Hyun;Cho, Seok-Cheol
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.3
    • /
    • pp.18-24
    • /
    • 2000
  • To evaluate the efficiency of various cationic starches in improving retention drainage and strength properties of newsprints which are being made using extensive amount of domestic recycled wastepapers in a highly closed papermaking system diverse cationic starches have been prepared and tested. In the case of cationic starches with low charge density as the degree of substitution increas-es fines retention increased. Results also showed that the retention efficiency decreased sub-stantially for cationic starches with low DS when the conductivity of white water inceased. Tensile strength increased with the addition of cationic starches and then decreased. On the other hand internal bonding strength increased linearly with the addition of cationic starch. Oxidizing treatment of cationic starch was detrimental for retention and freeness improve-ment. Also crosslinking treatment of wet processed cationic starches made cationic starches less effective in retention and drainage.

  • PDF

Hot Pressing Technology for Improvement of Density Profile and Sound Absorption Capability of Particleboard (파티클보드의 밀도경사와 흡음성 개선을 위한 열압기술)

  • Park, Hee Jun;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • Improvement of density profile and sound absorption capability of particleboard was attempted. Three types of hot pressing methods examined ; flat-platen pressing method (A-type pressing), hot pressing in forming box (B-type pressing), and hot pressing set up jagged caul in forming box (C-type pressing). The raw materials were larch(Larix leptolepis (S, et. Z.) Gorden) shavings, phenol formaldehyde resin, and the particleboard perforated with stair type. The physical and mechanical properties such as specific gravity, bending strength (MOR), internal bonding strength (IB) and sound absorption coefficients were examined. The results are summarized as follows : 1) The MOR and internal bonding strength of the board pressed in forming box were higher than those of flat-platen pressed board. 2) The minimum density to average density ratio in thickness direction which pressed in forming box showed about 923%, in the case of 35 mm commercial particleboard and 50 mm flat-platen pressed board, its values showed about 66.4% and 865% respectively. 3) Sound absorption coefficients of the particleboard perforated with stair type were higher than those of flat-plated pressed board and commercial particleboard.