• Title/Summary/Keyword: interleukin-13

Search Result 351, Processing Time 0.026 seconds

Suppression of Interleukin-2 Expression by Arachidonylethanolamide is Mediated by Down-regulation of NF-AT

  • Lee, Jung-Hee;Park, Kyung-Ran;Yea, Sung-Su
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.223-228
    • /
    • 2006
  • Several plant-derived cannabinoids and endogenous ligands for cannabinoid receptors such as 2-arachidonyl-glycerol have been known to inhibit interleukin-2 (IL-2) expression. In the present study, we utilized arachidonylethanolamide (AEA), a putative endogenous ligand for cannabinoid receptors, to determine whether AEA modulated the expression of IL-2. AEA inhibited phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io)-induced IL-2 protein secretion and mRNA expression in EL-4 mouse T-cells as determined by ELISA and RT-PCR, respectively. To further characterize the inhibitory mechanism of AEA at the transcriptional level, we performed promoter study for IL-2 gene in PMA/Io-stimulated EL-4 cells. AEA decreased the transcriptional activity of the nuclear factor of activated T-cells (NF-AT) as well as the IL-2 promoter activity. These results suggest that AEA suppresses IL-2 expression and that the inhibition is mediated, at least in part, through the down-regulation of NF-AT.

Simple Purification of Escherichia coli-Derived Recombinant Human Interleukin-2 Expressed with N-terminus Fusion of Glucagon

  • Won Hye-Soon;Lee Jeewon;Kim In-Ho;Park Young-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2000
  • Simple procedures have been devised for purifying recombinant human interleukin-2 (hIL-2), which was expressed in Escberichia coli using sequences of glucagon molecules and enterokinase cleavage site as an N-terminus fusion partner. The insoluble aggregates of recombinant fusion protein produced in E. coli cytoplasm were easily dissolved by simple alkaline pH shift $(8\rightarrow12\rightarrow8)$. Following enterokinase cleavage, the recombinant hIL-2 was finally purified by one-step reversed-phase HPLC with high purity. The ease and high efficiency of this simple purification process seem to mainly result from the role of used glucagon fusion partner, which could be applied to the production of other therapeutically important proteins.

  • PDF

Serum Human Leukocyte Antigen-G and Soluble Interleukin 2 Receptor Levels in Acute Lymphoblastic Leukemic Pediatric Patients

  • Motawi, Tarek M.K.;Zakhary, Nadia I.;Salman, Tarek M.;Tadros, Samer A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5399-5403
    • /
    • 2012
  • Aims and Background: Human leukocyte antigen-G and interleukin-2 receptor play pivotal roles in the proliferation of lymphocytes, and thus generation of immune responses. Their overexpression has been evidenced in different malignant hematopoietic diseases. This study aimed to validate serum soluble human leukocyte antigen-G (sHLA-G) and serum soluble interleukin-2 receptor (sIL-2R) as an additional tool for the diagnosis and follow up of acute lymphoblastic leukemia (ALL). Subjects and Methods: Both markers were determined by ELISA in the serum of 33 ALL pediatric patients before treatment and after intensification phase of chemotherapy as well as in the serum of 14 healthy donors that were selected as a control group. Results: ALL patients showed abnormal CBC and high serum lactate dehydrogenase, which were improved after chemotherapy. Also, there was a non-significant increase in serum sHLA-G in ALL patients compared with the control group. However, after chemotherapy, sHLA-G was increased significantly compared with before treatment. On the other hand, serum sIL-2R in ALL patients was increased significantly compared with the control group. After chemotherapy, sIL-2R decreased significantly compared with before treatment. Conclusions: From these results it could be suggested that measurement of serum sHLA-G might be helpful in diagnosis of ALL, while sIL-2R might be useful in diagnosis and follow-up of ALL in pediatric patients.

Modulation of Humoral and Cell-Mediated Immunity Against Avian Influenza and Newcastle Disease Vaccines by Oral Administration of Salmonella enterica Serovar Typhimurium Expressing Chicken Interleukin-18

  • Rahman, Md Masudur;Uyangaa, Erdenebileg;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2013
  • Interleukin-18 (IL-18) has been known to induce interferon-${\gamma}$ (IFN-${\gamma}$) production and promote Th1 immunity. Although mammalian IL-18 has been characterized in great detail, the properties and application of chicken IL-18 remain largely uninvestigated as of yet. In this study, we evaluated the immunomodulatory properties of Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 (chIL-18) on immune responses induced by avian influenza (AI) and Newcastle disease (ND) vaccines. After oral administration of S. enterica serovar Typhimurium expressing chIL-18, chickens were vaccinated intramuscularly with the recommended dose of either inactivated AI H9N2 vaccine or ND (B1 strain) vaccine. Chickens receiving a primary vaccination were boosted using the same protocol 7 days later. Humoral and cell-mediated immune responses were evaluated in terms of HI antibody titers and proliferation and mRNA expression of IFN-${\gamma}$ and IL-4 of peripheral blood mononuclear cells (PBMC) in response to specific antigen stimulation. According to our results, oral administration of S. enterica serovar Typhimurium expressing chIL-18 induced enhanced humoral and Th1-biased cell-mediated immunity against AI and ND vaccines, compared to that of chickens received S. enterica serovar Typhimurium harboring empty vector. Therefore, we conclude that our proposed vaccination regimen using inactivated AI and ND viruses along with oral administration of S. enterica serovar Typhimurium expressing chIL-18 may provide a novel approach in protecting chicken from currently circulating AI and ND virus strains.

Artemisia argyi H.Lev. & Vaniot Inhibits Matrix metalloproteinases in the Interleukin-1β-stimulated Primary Chondrocytes and Attenuates Osteoarthritis Progression in Mice (황해쑥의 Interleukin-1β 유도 연골세포에서 Matrix metalloproteinase들의 억제효과 및 마우스에서 관절염 진행 감소 효과)

  • Park, Chan Hum;Yang, Chang Yeol;Yang, Siyoung;Yokozawa, Takako;Shin, Yu Su
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.94-94
    • /
    • 2019
  • 황해쑥(Artemisia argyi H.Lev. & Vaniot)은 우수한 항염증 활성을 지닌 것으로 다양하게 보고 되었다. 그러나, 대표적인 염증 질환 중 하나인 골관절염에 미치는 영향은 현재까지 알려져 있지 않다. 따라서, 본 연구에서는 염증 유발 연골 세포 및 골관절염 유발 동물 모델에 미치는 황해쑥 효과에 대해 조사하였다. 첫째, interleukin 1 beta를 투여한 관절 연골 세포에 황해쑥 물 추출물을 투여한 후 metalloporeinase (MMP) -3 및 MMP-13의 발현을 mRNA 및 단백질 수준에서 분석 하였다. 또한, 내측 반월상 연골의 불안정화에 의해 유도 된 골관절염 마우스 모델을 사용하여 황해쑥 물 추출물의 골관절염 억제 효과를 분석 하였다. 세포 실험에서, 본 황해쑥은 MMP-3와 MMP-13의 mRNA 및 단백질 발현을 유의하게 억제하였다. 또한. 황해쑥 물 추출물을 투여한 실험 동물의 관절 조직을 Safranin O 염색을 실시하여 분석한 결과 연골 하 골판 두께의 감소 및 활막 염증 개선 효과가 관찰 되었다. HPLC를 이용한 성분 분석 결과, 황해쑥 물 추출물은 항염증 및 항관절염 활성을 가진 jaceosidin과 eupatilin을 함유하는 것으로 나타났다. 본 연구결과로부터 황해쑥은 골관절염의 치료 또는 예방에 유망한 소재로 개발될 수 있음을 시사한다.

  • PDF

Effect of Coptidis Rhizoma Extract on Cytokine Production of Mouse Macrophages (황연(黃連) 추출물이 대식세포의 면역단백질 생성에 미치는 영향)

  • Kim, Bok-Kee;Han, Hyo-Sang;Lee, Young-Jong
    • Herbal Formula Science
    • /
    • v.21 no.2
    • /
    • pp.81-89
    • /
    • 2013
  • Objectives : The purpose of this study is to observe the effect of Coptidis Rhizoma (CCE-extract of C. chinensis Rhizome) in induction of immune protein on mouse macrophages. Methods : To analyze cytokines interleukin(IL)-$1{\alpha}$, IL-3, IL-9, IL-12p40, IL-13, IL-17, Monocyte Chemoattractant Protein(MCP)-1 induced by macrophages, mouse macrophages were incubated with CCE and was measured. Results : IL-$1{\alpha}$ measurement, CCE showed significant inhibition only at concentration level of 200 ${\mu}g/mL$. IL-3, MCP-1 measurement, CCE showed significant inhibition only at concentration level of 100, 200 ${\mu}g/mL$. IL-9 measurement, CCE showed significant inhibition only at concentration level of 50 ${\mu}g/mL$. IL-13 measurement, CCE showed significant inhibition only at concentration level of 50, 100, 200 ${\mu}g/mL$. The IL-12p40, IL-17 levels indicated no changes at 25, 50, 100, 200 ${\mu}g/mL$ on mouse macrophages. Conclusions : CCE did not significantly increased inflammatory cytokines IL-$1{\alpha}$, IL-3, IL-9, IL-12p40, IL-13, IL-17, Monocyte Chemoattractant Protein(MCP)-1 on mouse macrophages. It was verified CCE does not trigger cytokine related hypersensitivity reaction of organism or exacerbation of acute/chronic inflammatory disease.

Anti-inflammatory Activity of Essential Oil Extracted from Chamaecyparis obtusa (Sieb. et Zucc.) Wood (편백 목부 정유의 항염증 효과 평가)

  • Yang, Jiyoon;Ahn, Changhwan;Jeung, Eui-Bae;Choi, Won-Sil;Kim, Jae-Woo;Park, Mi-Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • This study was conducted to determine the anti-inflammatory effect of essential oil extracted from the wood of Chamaecyparis obtusa Sieb. et Zucc. Endl. (Cupressaceae). The essential oil was extracted from the wood of C. obtusa by hydrodistillation method, and conducted the analysis on the chemical composition of the extracted C. obtusa wood oil through GC-MS. The major constituents of the oil were found to be: ${\alpha}-pinene$ (11.4%), cadinene (5.4%), ${\delta}-cadiene$ (9.0%), ${\tau}-muurolol$ (22.2%), ${\alpha}-cadinol$ (20.8%) etc. We attempted to identify the anti-inflammatory activities of the oil when it is injected in the lipopolysaccharide (LPS)-stimulated RBL-2H3 cells, along with its effects on the secretion of interleukin-4 (IL-4), interleukin-13 (IL-13), ${\beta}-hexosaminidase$. According to the cell viability analysis conducted by MTT assay, the oil in $10^{-7}{\sim}10^{-5}%$concentration showed no effect on the cell viability. After RBL-2H3 cells treated by LPS stimulation were exposed to $10^{-7}%$ concentration of C. obtusa wood oil, the expression levels of IL-4, IL-13 within the cell were observed to remarkably decrease. Also, it was attenuated the release of ${\beta}-hexosaminidase$ from mast cells to a significantly meaningful level. These results suggest that C. obtusa wood oil exerts the anti-inflammatory effect, by regulating the expression of inflammatory cytokines, which is a valuable feature to be highly utilized as the functional materials in the future.

Inhibitory Effect of Gallic acid on Production of Interleukins in Mouse Macrophage Stimulated by Lipopolysaccharide (Gallic acid가 Lipopolysaccharide로 활성화된 마우스 대식세포의 인터루킨 생성에 미치는 영향)

  • Park, Wan-Su
    • Journal of Pharmacopuncture
    • /
    • v.13 no.3
    • /
    • pp.63-71
    • /
    • 2010
  • Objectives: Gallic acid (GA) is the major component of tannin which could be easily founded in various natural materials such as green tea, red tea, grape juice, and Corni Fructus. The purpose of this study is to investigate the effect of Gallic acid (GA) on production of interleukin (IL) in mouse macrophage Raw 264.7 cells stimulated by lipopolysaccharide (LPS). Methods: Productions of interleukins were measured by High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$ (multi-analyte profiling beads) technology. Firstly, cell culture supernatant was obtained after treatment with LPS and GA for 24 hour. Then, it was incubated with the antibody-conjugated beads for 30 minutes. And detection antibody was added and incubated for 30 minutes. And Strepavidin-conjugated Phycoerythrin (SAPE) was added. After incubation for 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System and concentration of interleukin was determined. Results: The results of the experiment are as follows. 1. GA significantly inhibited the production of IL-3, IL-10, IL-12p40, and IL-17 in LPS-induced mouse macrophage RAW 264.7 cells at the concentration of 25, 50, 100, 200 uM (p<0.05). 2. GA significantly inhibited the production of IL-6 in LPS-induced mouse macrophage RAW 264.7 cells at the concentration of 50, 100, 200 uM (p<0.05). 3. GA diminished the production of some cytokine such as IL-4, IL-5, and IL-13 in LPS-induced mouse macrophage RAW 264.7 cells. 4. GA did not show the inhibitory effect on the production of IL-$1{\alpha}$ and IL-9 in LPS-induced mouse macrophage RAW 264.7 cells. Conclusions: These results suggest that GA has anti-inflammatory activity related with its inhibitory effects on the production of interleukins such as IL-3, IL-10, IL-12p40, IL-17, and IL-6 in LPS-induced macrophages.

Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways

  • Chae, Hee-Sung;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.

Regulation of Interleukin-1${\beta}$-induced Dedifferentiation and Apoptosis via p38 Mitogen-activated Protein Kinase Pathway in Articular Chondnocytes (연골세포의 탈분화 및 세포고사 억제를 위한 기전연구)

  • Huh Jeong-Eun;Cho Eun-Mi;Yang Ha-Ru;Kim Dae-Sung;Baek Yong-Hyeon;Lee Jae-Dong;Choi Do-Young;Park Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.27 no.1 s.65
    • /
    • pp.220-228
    • /
    • 2006
  • Objectives : Interleukin-1 (IL-1)${\beta}$ in articular chondrocytes regulates differentiation, apoptosis, and inflammatory responses. It is still controversial, So, we investigated IL- $1{\beta}$ induces chondrocytes dedifferentiation and death. Also, we studied the role of the mitogen-activated protein kinase (MAPK) subtypes on IL-$1{\beta}$-induced dedifferentiation and apoptosis. Methods : To evaluation of dedifferentiation by chemokines of chondrocytes, we assessed such as proteoglycan, collagen, MMP-3 and MMP-13 by RT-PCR analysis. Also, to assess of apoptosis effect by chemokines, we measured annexin V/propidium iodode (PI) and sub G1 cells in chondrocytes by flowcytometric analysis Results : IL-$1{\beta}$ treatment did not affect activation of ERK-1/2, but stimulation of p38 kinase. Inhibition of phospho ERK-1/2 with PD98059 enhanced IL-1b-induced dedifferentiation, and apoptosis up to 13.5%, whereas inhibition of phospho p38 kinase with SB203580 inhibited dedifferentiation, and apoptosis. Conclusions : Our results indicate that SB203580, p38 kinase inhibitor, inhibits IL-$1{\beta}$-induced dedifferentiation, and apoptosis by the inhibition of type II collagen expression and proteoglycan synthesis of rabbit articular chondrocytes.

  • PDF