• Title/Summary/Keyword: interleaved boost converter

Search Result 109, Processing Time 0.035 seconds

A Study on Electronic Ballast with Improved Input Current Waveform (입력전류 파형 개선효과를 갖는 전자식 안정기에 관한 연구)

  • Heo Tae-Won;Son Young-Dae;Woo Jung-In
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1239-1241
    • /
    • 2004
  • In this paper, electronic ballast with Interleaved Boost Cell is presented. The proposed topology is based on a single-stage ballast which combines a boost converter and a half-bridge series resonant inverter High power factor and low THD(reduction of current ripple) are achieved by using the boost semi-stage operating in discontinuous conduction mode, and inverter semi-stage operated above resonant frequency to provide zero voltage switching is employed to ballast the fluorescent lamp. The experimental results from the ballast system with fluorescent lamps have demonstrated the feasibility of the proposed electronic ballast.

  • PDF

Analysis of Interleaved Boost Converter at DCM for Fuel Cell Applications (연료전지용 다상 부스트 컨버터 불연속 모드 특성 해석)

  • Kim, Dong-Hee;Choe, Gyu-Yeong;Lee, Byoung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1035_1036
    • /
    • 2009
  • 본 논문에서는 연료전지에 적용될 수 있는 다상부스트의 동작과 전류 불연속 모드에서 입력전류의 발생 추이를 수식적으로 제시하였다. 제시한 방법은 입력전류의 구간을 나눈 뒤 구간마다 입력 전류의 상태 방정식을 각각 유도 하였으며 이를 바탕으로 리플크기를 나타내었다.

  • PDF

Implementation and Experiment of 3KW Three Phase Interleaved Boost Converter (3KW 3상 인터리브드 부스트 컨버터 구현 및 실험)

  • Cha, Hanju;Kang, Young-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1001_1002
    • /
    • 2009
  • 본 논문은 태양광 PCS 발전 시스템을 위한 3KW 3상 인터리브드 부스트 컨버터의 동작과 제작을 위한 기반사항에 대해 서술하였으며, 컨버터의 희망 출력전압을 얻기 위한 제어부의 구성과 비례전류제어를 사용한 동작알고리즘을 포함해 실제 PCB 제작을 위해 선정한 부품 및 배치의 구성에 대해 다루었다. 제어부는 아날로그가 아닌 디지털 제어를 채택하여 컨버터 각 부의 센서를 통해 전류, 전압 값을 취득하고, 이를 DSP에서 처리하여, 기준값과 피드백 값과의 오차 보상을 위한 PWM 신호를 생성, 컨버터를 동작시킨다.

  • PDF

2 Phase Interleaved Bidirectional DC-DC Converter for Inverter of Variable DC-Link Voltage using on Electric Vehicle (전기자동차용 인버터의 DC-Link 전압 가변을 위한 2상 인터리브드 양방향 DC-DC 컨버터)

  • Lee, Jae-Hyuk;Lee, Jung-Hyo;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.25-26
    • /
    • 2010
  • 본 논문은 전기자동차용 인버터의 DC-Link 전압 가변을 위한 2상 양방향 DC-DC 컨버터의 제어 기법을 제안한다. 제안된 DC-DC 컨버터는 2-스위치 Buck-Boost 컨버터를 병렬구성 하여 전기자동차의 높은 출력에 대응하였으며 출력단 다이오드를 스위치로 교체하여 회생동작을 가능하게 하였다. 이를 시뮬레이션을 통하여 제어알고리즘의 가능성을 확인하였다.

  • PDF

A Non-isolated Interleaved 3-Level High Step-Up Boost Converter (비절연형 인터리브드 3-레벨 고승압 부스트 컨버터)

  • Nam, HyunTaek;Kim, Heung-Geun;Cha, Honnyong
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.357-358
    • /
    • 2017
  • 본 논문에서는 새로운 비절연형 3-레벨 고승압 부스트 컨버터를 제안한다. 제안한 컨버터는 기존의 출력 전압 밸런싱 기능을 가지는 3-레벨 고승압 부스트 컨버터에서 스위치와 인덕터의 위치를 변경하여 인터리브드 구조를 적용함으로써 출력전압 밸런싱 기능을 유지하면서 입력 전류의 리플 저감이 가능한 구조이다. 제안한 컨버터를 시뮬레이션을 통해서 검증하였다.

  • PDF

Research on a 2.5kW 8-Phase Bi-directional Converter for Mild Hybrid Electric Vehicles (마일드 하이브리드 전기 차량용 2.5kW급 8상 양방향 컨버터에 관한 연구)

  • Lim, Jae-Woo;Kim, Hee-Jun;Choi, Jun-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • This paper is a study on the bi-directional DC-DC converter, one of the key elements of 48V-12V dual systems in mild hybrid electric vehicles. Mild hybrid electric vehicles require a bi-directional DC-DC converter that can efficiently transmit power in two directions between a 48V battery and a 12V battery. To develop a bi-directional DC-DC converter with better price competitiveness, upgraded fuel economy, excellent performance and smaller size, this study designed, produced and presented a circuit that improved on the existing one. In the proposed 8-phase bi-directional DC-DC converter, the size of the passive element was reduced through the 8-phase interleaved topology, whereas downscaling had previously posed a difficulty. This study also designed and produced a 2.5kW class prototype. Based on the proposed 8-phase interleaved topology, a size of 227.5 (W) * 172 (L) * 64.35 (H) was achieved. In the boost mode operation and buck operation modes, the maximum efficiency was recorded at 94.04 % and 95.78 %, respectively.

A Study of Interleaved AC/DC Converter to Improved Power Factor and Current Ripple (역률과 전류 리플을 개선한 인터리브 AC/DC 컨버터에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Kwon, Soon-Do;Bae, Jin-Yong;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.152-155
    • /
    • 2009
  • In high power application, PFC(Power Factor Correction) pre-regulators are generally required. PFC pre-regulators could achieve unity power factor, reduce line input current harmonics and utilize full line power. Interleaving PFC converters could reduce input ripple current, output capacitor ripple current and inductor size. With this closed loop interleaving method, both two phase converters are working at the boundary between continuous and discontinuous mode and accurate 180 degree phase shift is achieved. Implementation of this strategy could be easily integrated to the control chip. Finally, experimental results of a two-phase interleaved boost PFC are presented to verify the discussed features.

  • PDF

A Study on the Controllable Snubber for Switching Loss Reduction in Interleaved Fly-Back Converter (인터리브드 플라이 백 컨버터의 스위칭 손실 감소를 위한 제어형 스너버에 관한 연구)

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.57-64
    • /
    • 2015
  • This paper proposes a new switching algorithm for an controllable clamp snubber to improve the efficiency of a fly-back converter system. This system uses an controllable clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Experimental results are presented to show the validity of the proposed controllable clamp control algorithm.

The development of high efficiency isolated converter for vehicle charger (차량 충전용 고효율 절연형 컨버터 개발)

  • Park, Minjun;Jin, Hoshang;Lee, Gunhee;Hwang, Kwangkyu;Kim, Woosup;Lee, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.101-102
    • /
    • 2015
  • This paper is about the suggestion for the development in the commercialization for 3.6kW Class On-Board charger. It is suggesting non-insulation AC-DC Boost Power Factor correction circuit and insulation DC-DC resonant Converter for circuit design. In addition, Input AC voltage in the power supply is DCM control which can be designed to decrease the inductance for the inductor size to be reduced. DCM controls and Interleaved PFC can be designed to decrease the inductor size increasing the power conversions. Also, using the insulation DC-DC resonant converter, the efficiency can be increased. This system is verified using prototype hardware.

  • PDF

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.