• Title/Summary/Keyword: interlayer expansion

Search Result 28, Processing Time 0.027 seconds

A Study on Residual Stress of SiC Whisker Reiforced AI Alloy/$ZrO_2$ Joints (SiC 휘스커강화 금속복합재료와 지르코니아 접합체의 잔류응력 해석에 관한 연구)

  • 주재황;박명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.18-26
    • /
    • 1996
  • A two dimensional thermo elasto-plastic finite element stress analysis was performed to study residual stress distributions in AI composites reinforced by SiC whisker and $ZrO_2$ ceramic joints. The influences on the residual stress distributions due to the difference of the reinforcement volume fraction and interlayer material property were investigated. Specifically, stress distributions between AI interlayer material property were investigated. Specifically, stress distributions between AI interlayer and $ZrO_2$ ceramic and between the AI interlayer and AI composite were computationally analzed.

  • PDF

Comparison of Some Physicochemical Properties and Adsorption of Organic Cations between Ca- and Na-bentonites (Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교)

  • 고상모;김자영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.243-257
    • /
    • 2002
  • Ca-type and Na-type bentonites show the great difference of some physicochemical properties. Na exchanged bentonite is mainly used for the foundry and construction materials in domestic utilization. This study tries to identify in detail the differences of some physicochemical properties and thermal properties between Ca-type and Na-type bentonites. Also the adsorption behavior and interlayer expansion for the HDTMA (Hexadecyltrimethylammonium) exchanged and CP (Cetylprydinium) exchanged Ca-type and Na-type bentonites were compared. Na-type bentonite shows the strong alkaline property, high viscosity and swelling compared to Ca-type bentonite. However, two types are very similar for the cation exchange capacity and MB (Methylene Blue) adsorption. The decomposition of adsorbed and interlayer water of Na-type bentonite is caused in the lower temperature than Ca-type bentonite. And Ca-type bentonite shows the decomposition of structural water in the lower temperature than Na-type bentonite. The interlayer expansion of montmorillonite resulted to the intercalation of HDTMA and CP into bentonite is so strongly caused from 12~15 $\AA$ to $40\AA$ (basal spacing). HDTMA-bentonite is almost expanded to $37~38\AA$ when 200% CEC equivalent amount of HDTMA is added, and CP-bentonite is fullly expanded to 40 $\AA$ in the 140% CEC equivalent amount of CP It means that CP causes the stronger interlayer expansion of montmorillonite and easier adsorption than HDTMA. Adsorption behaviors of CP into bentonite is so stable and continuously sorbed in the proportion to the treatment of amount until 200% of the CEC equivalents. CP-bentonite shows the same adsorption behavior regardless of Ca-type or Na-type montmorillonite.

Effect of Interlayer Materials on Bending Strength and Reliability of Si$_3$N$_4$/S. S316 Joint (Si$_3$N$_4$/S. S316 접합에서 중간재가 접합강도 및 신회도에 미치는 영향)

  • 윤호욱;박상환;최성민;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.219-230
    • /
    • 1998
  • Various interlayer materials have been tested for active metal(Cusil ABA) brazing of Si3N4/S. S316 joint. In general multilayer joint had higher strength(80-150 MPa) and better reliability than monolayered one. The joint with Cu(0.2)/Mo(0.3)/Cu(0.2mm) interlayer showed the highest bending strength of abou 490 MPa and the joint with Cu(0.2)/Mo(0.3mm) interlayer the best reliability (14.6 Weibull modulus). The stresses distributed in joint materials during 4-point bending test were estimated by CAE von Mises analysis; the estimated stresses were In good agreement with the measured data. In multilayer joint Cu was though to reduce the residual stresses induced by the difference in thermal expansion coefficient between the ceramic Mo and metal It apperared that a Cu/Mo was optimum interlayer material for Si3N4/S. S316 joint with high bending strength (420 MPa) and reliability. In addition the various shapes and types of compound were examined by EPMA in joining interface.

  • PDF

Modified Effects or Surfactants with Polymer-Clay Nanocomposites (고분자-점토 나노복합체에 관한 계면활성제의 개질 영향)

  • Kim, Hong-Un;Bang, Yun-Hyuk;Choi, Soo-Myung;Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.290-299
    • /
    • 2006
  • This article investigated to polymer-clay nanocomposite, especially in interfacial respect clay structure, its dispersion into polymer matrix, and clay modification is studied. The cationic exchange of surfactants with clay gallery results in preparing organo-clay capable of compatiblizing to monomer or polymer and increasing interlayer adhesion energy due to expansion of interlayer spacing. The orientation of surfactant in clay gallery is affected by chemical structure and charge density of clay, and interlayer spacing and volume is increased with alkyl chain length of surfactant, or charge density of clay. Also, the interaction between clay and polymer in preparing polymer-clay nanocomposite is explained thermodynamically. In the future, the study and development of polymer-clay nanocomposite is paid attention to the interfacial adhesion, clay dispersion within polymer, mechanism of clay intercalation or exfoliation.

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

c-axis Tunneling in Intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ Single Crystals

  • Lee, Min-Hyea;Chang, Hyun-Sik;Doh, Yong-Joo;Lee, Hu-Jong;Lee, Woo;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.260-260
    • /
    • 1999
  • We compared c-axis tunneling characteristics of small stacked intrinsic Josephson junctions prepared on the surface of pristine, I-, and HgI$_2$-intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ (Bi2212) single crystals. The R(T) curves are almost metallic in I-Bi2212 specimens, but semiconducting in HgI$_2$-Bi2212 ones.· The transition temperatures were 82.0 K, 73.0 K, and 76.8 K for pristine Bi2212, I-Bi2212, and HgI2-Bi2212 specimens, respectively, consistent with p-T$_c$ phase diagram. Current-voltage (IV) characteristics of both kinds of specimens show multiple quasiparticle branches with well developed gap features, indicating Josephson coupling is established between neighboring CuO$_2$ planes. The critical current I$_c$ of I-Bi2212 is almost the same as of that of pristine crystals, but I$_c$ is much reduced in Hgl$_2$-Bi2212. In spite of expanded interlayer distances, the interlayer coupling is not significantly affected in I-Bi2212due to holes generated by iodine atoms. The coupling in HgI$_2$-Bi2212 is, however, weakened due to inertness of HgI$_2$ molecules and the expansion of interlayer distance. Relation between the superconducting transition temperature T$_c$ and the critical current I$_c$ seems to contradict Anderson's interlayer-pair-tunneling theory but agree with a modified version of it.

  • PDF

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

Evaluation of Stability of CLC through Strength and Reduction of Drying Shrinkage (강도 및 건조수축 저감을 통한 CLC의 안정성 평가)

  • Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.205-206
    • /
    • 2022
  • This study intends to conduct tests on subsidence and drying shrinkage by mixing CaO-CSA expansion materials to ensure the stability of CLC, and to understand its properties. Based on CLC of 0.6, the replacement ratio of CaO-CSA expansion material was conducted at five levels compared to blast furnace slag, and the results are as follows. The replacement of CaO-CSA expansion material at an appropriate level produces ethringhite and potassium hydroxide, and it is believed that the internal voids of CLC and the Tobelmorite interlayer structure are charged to increase the structural stability, leading to an increase in compressive strength and a decrease in the drying shrinkage. However, it is judged that tissue relaxation due to excessive substances in the high replacement ratio affects the stability of CLC. In the future, we will conduct additional experiments on density, absorption rate, flow test, and settlement, and evaluate and analyze the stability of CLC by selecting the optimal replacement ratio of CaO-CSA expansion materials.

  • PDF

Characteristics of Exfoliated Graphite Prepared by Intercalation of Gaseous SO3into Graphite

  • Lee, Beom-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1801-1805
    • /
    • 2002
  • The graphite intercalation compounds(GIC) were prepared by a dry process that led to the intercalation from the direct reaction of gaseous $SO_3$ with flake type graphite. The basal spacing of the GIC was increased from 8.3 ${\AA}$ to 12 in the gallery height. The ejection of interlayer $SO_3$ molecules by the heating for 1 minute at $950^{\circ}C$ resulted in an exfoliated graphite (EG) with surprisingly high expansion in the direction of c-axis. The expansion ratios of the exfoliated graphites were increased greatly between 220 times and 400 times compared to the original graphite particles, and the bulk density was range of 0.0053 to 0.01 $g/cm^3$, depending on reaction time. The pore size distribution of exfoliated graphite was in the range of $10-170{\mu}m$, which exhibites both mesoporosity and macroporosities. This result indicates that the direct reaction of graphite paricles with gaseous $SO_3$ can be proposed as an another route for the exfoliated graphite having excellent physical properties.

Characteristics of Al-Pillared Clay Synthesized from Bentonite and the Adsorption Properties for Phosphate Ion (벤토나이트로부터 합성한 Al-층간가교점토의 특성과 인산이온의 흡착성)

  • 황진연;김나영;이효민
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.315-327
    • /
    • 2002
  • Al-pillared clay was synthesized by constructing pillars of aluminum oxides at the interlayer of montmorillonite in bentonite. XRD, DTA and chemical analyses of Al-pillared clay were performed to examine mineralogical properties. Batch adsorption experiments were also conducted to determine the adsorption properties of this synthesized clay for phosphate ions. XRD analyses showed that the interlayer space of Al-pillared clay expanded to 18.03 $\AA$ at room temperature and shifted to $17 \AA$ after heating to $550^{\circ}C$. A small change in interlayer space after heating indicates high thermal stability. The interlayer expansion by glycerol was also very small. From DTA analyses, pillared clay showed the characteristic endothermic peaks at 270 and $420^{\circ}C$ , which might be caused by dehydration in framework of pillars between interlayers. Adsorption experiment revealed that Al-pillared clay had an excellent adsorption capacity to the phosphate ions, whereas montmorillonite had very low adsorption capacity to phosphate ions. In phosphate solution concentration up to 300 mg/L, 2 g of pillared clay could uptake almost 100% of phosphate ions from 20 mL of solution. After heat treatment of the phosphate adsorbed pillared clay at 50$0^{\circ}C$ to remove phosphate, the calcined pillared clay could adsorb phosphate ions with a little decreased adsorption efficiency. This fact indicates that Al-pillared clay can be recycled for the adsorption of phosphate ions.