• 제목/요약/키워드: interlaminar shear strength

검색결과 74건 처리시간 0.02초

첨가제에 의한 저밀도 2-D 탄소/탄소 복합재의 층간전단강도 개선 (The Improvement of Interlaminar Shear Strength for Low Density 2-D Carbon/Carbon Composites by Additives)

  • 손종석;정구훈;주혁종
    • 폴리머
    • /
    • 제24권6호
    • /
    • pp.845-853
    • /
    • 2000
  • DSC와 TGA 분석으로 탄소섬유/페놀수지 복합재의 최적 경화조건과, 탄화조건을 선정하고 핫프레스 몰딩 방법으로 복합재를 제조한 후 140$0^{\circ}C$까지 탄화하였다 또한 층간전단강도의 개선에 효과적이라 생각되는 흑연분말, 카본블랙, 분쇄된 탄소섬유 및 탄소섬유 매트를 첨가하여 이러한 첨가제가 밀도 및 기공도에 미치는 영향과 ILSS, 굽힘강도와 같은 기계적 물성과의 상관관계에 대하여 연구하였다. 흑연분말을 약 9 vol% 첨가한 경우 가장 큰 ILSS 값과 굽힘강도 값을 나타내었고 카본블랙의 경우, 약 3 vol%에서 ILSS 값이 약간 증가하였으나 굽힘강도는 감소하였다. 분쇄된 탄소섬유와 탄소섬유 매트 첨가시 수지부족과 열수축에 의한 층간분리가 발생하여 밀도와 ILSS 및 굽힘강도를 감소시키는 결과를 나타내었다.

  • PDF

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

하이브리드 FRP 리바의 역학적 특성 (Mechanical Properties of Hybrid FRP Rebar)

  • 박찬기;원종필
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.58-67
    • /
    • 2003
  • Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구 (A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature)

  • 홍중식;김명곤;김천곤;공철원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF

탄소섬유/폴리아마이드 6,6 복합재료의 기계적 물성 향상 (Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites)

  • 송승아;온승윤;박고은;김성수
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.365-370
    • /
    • 2017
  • 탄소섬유 강화 열가소성 수지 복합재료(Carbon fiber reinforced thermoplastic composites; CFRTPs)의 물성은 다양한 요인들에 영향을 받는다. 그 중에서도 탄소섬유 표면에 Sizing되어 있는 에폭시(Epoxy) 층은 열가소성 수지와 상호 작용(Interaction)이 없어 매우 취약한 계면을 형성하며, 열가소성 수지의 높은 용융 점도(Melting viscosity)는 탄소섬유 다발(Bundle) 사이로 함침(Impregnation)이 어려워 탄소섬유 강화 복합재료 내부에 기공(Void)를 형성한다. 이와 같이 탄소섬유와 열가소성 수지 간의 낮은 계면전단강도(Interfacial shear strength)은 탄소섬유강화 열가소성 복합재료(Carbon fiber reinforced thermoplastic composites; CFRTPs)의 기계적 물성을 저하시키는 가장 중요한 요인 중 하나이다. 따라서, 본 연구에서는 열가소성 수지와의 상호작용이 없는 탄소섬유 표면의 에폭시 층을 열풍을 통해 제거하고, 열가소성 수지의 점도를 낮춰 함침도를 향상시키기 위해서 용액형 열가소성 수지를 제조하여 탄소섬유 표면에 Sizing 처리 함으로써 CFRTPs의 물성을 향상시켰다. CFRTPs의 층간전단강도(Interlaminar shear strength; ILSS) 및 굽힘 강도(Flexural strength)를 통해 이를 검증하였으며, 수지의 함침도는 기공률(Void content)의 계산을 통해 분석하였다.

Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review

  • Khan, Shafi Ullah;Kim, Jang-Kyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.115-133
    • /
    • 2011
  • Fiber reinforced polymer composites (FRPs) are being increasingly used for a wide range of engineering applications owing to their high specific strength and stiffness. However, their through-the-thickness performance lacks some of the most demanding physical and mechanical property requirements for structural applications, such as aerospace vehicles and military components. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs), due to their excellent mechanical, thermal and electrical properties, offer great promise to improve the weak properties in the thickness direction and impart multi-functionality without substantial weight addition to FRPs. This paper reviews the progress made to date on i) the techniques developed for integration of CNTs/ CNFs into FRPs, and ii) the effects of the addition of these nanofillers on the interlaminar properties, such as such interlaminar shear strength, interlaminar fracture toughness and impact damage resistance and tolerance, of FRPs. The key challenges and future prospects in the development of multiscale CNT-FRP composites for advanced applications are also highlighted.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

Kevlar-29 섬유강화 복합재료의 기계적 계면 특성 연구 (Studies on Mechanical Interfacial Properties of Kevlar-29 Fibers Reinforced Composites)

  • Park, Soo-Jin;Seo, Min-Kang;Ma, Tae-Jun;Lee, Jae-Rock
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.158-162
    • /
    • 2001
  • The effects of chemical treatment on Kevlar-29 fibers have been studied in a composite system. The surface characteristics of the Kevlar-29 fibers were characterized by pH, acid-base value and X-ray photoelectron spectroscopy (XPS). The mechanical interfacial properties of final composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). Also, the impact properties of the composites were investigated in the differentiating studies between initiation and propagation energies, and ductile index (DI) along with maximum farce and total energy. It was found that the chemical treatment with phosphoric acid ($H_3PO_4$) solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improving the mechanical interfacial strength of the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force in a composite system.

  • PDF

탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구 (A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites)

  • 홍은미;이규환;김양도;임동찬
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.223-228
    • /
    • 2013
  • In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

전해 니켈도금 처리에 따른 탄소섬유/에폭시 수지 복합재료의 섬유표면 및 기계적 계면전단 강도 (Fiber Surfaces and Interlaminar Shear Strengths of Electrolytic Ni-plated Carbon Fiber/Epoxy Resin Composites)

  • 박수진;장유신;이재락;김진석
    • 폴리머
    • /
    • 제24권5호
    • /
    • pp.721-727
    • /
    • 2000
  • 탄소섬유/에폭시 수지 복합재료의 기계적 계면 결합력을 증가시키기 위해 탄소섬유를 전해 니켈도금 표면처리하였다. 탄소섬유의 표면특성과 복합재료의 최종 기계적 물성은 각각 X-ray photoelectron spectroscopy (XPS)와 Interlaminar shear strength (ILSS) 측정을 통하여 알아보았다. 본 실험결과, 전해 니켈도금은 복합재료의 계면, 즉 강화재인 탄소섬유와 매트릭스간의 계면 결합력에 크게 영향을 미침을 알 수 있었으며, 특히 니켈도금 처리된 탄소섬유 표면에서 $O_{1s}$/$C_{1s}$ 비의 증가와 NiO 그룹 및 금속 니켈의 형성은 기계적 특성인 ILSS 증가의 요인으로 작용함을 알 수 있었다 또한, $O_{1s}$/$C_{1s}$비는 복합재료의 ILSS와 밀접한 관계가 있음을 고찰하였다.을 고찰하였다.

  • PDF