• Title/Summary/Keyword: interior permanent magnet

Search Result 497, Processing Time 0.032 seconds

Optimum Design of Stator and Rotor Shape for Cogging Torque Reduction in Interior Permanent Magnet Synchronous Motors

  • Yu, Ju-Seong;Cho, Han-Wook;Choi, Jang-Young;Jang, Seok-Myeong;Lee, Sung-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.546-551
    • /
    • 2013
  • This paper deals with the optimum design of the stator and rotor shape of the interior permanent magnet synchronous motors (IPMSM) that are used in applications for automobiles. IPMSMs have the following advantages: high power, high torque, high efficiency, etc. However, cogging torque which causes noise and vibrations is generated at the same time. The optimum design of shape of a IPMSM was carried out with the aim of reducing cogging torque. Six variables which affect to the performance of a IPMSM are chosen. The main effect variables were determined and applied to the response surface methodology (RSM). When compared to the initial model using the finite elements method (FEM), the optimum model highly reduces the cogging torque and improves the total harmonics distortion (THD) of the back-electro motive force (EMF). A prototype of the designed model was manufactured and experimented on to verify the feasibility of the IPMSM.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Jung, Seung-Hwan;Choy, Ick;Cho, Whang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.

Analysis of an Interior Permanent-Magnet Machines with an Axial Overhang Structure based on Lumped Magnetic Circuit Model

  • Seo, Jangho;Seo, Jung-Moo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.94-101
    • /
    • 2016
  • This paper shows a new magnetic field analysis of an interior permanent magnet (IPM) machines with an axial overhang structure wherein the rotor axial length exceeds that of the stator. The rotor overhang used to increase torque density of the radial flux machine is difficult to analyze because of extra consideration of axial direction, and thus it is general for machine designer to take 3-D finite element analysis (FEA) capable of considering both radial and axial complicated geometry in the machine. However, it requires too much computing time for preliminary design especially for optimization process. Therefore, in this paper a 2-D analytic method using a lumped magnetic circuit model (LMCM) is proposed to overcome the problem. For the analysis of overhang effect, the magnetic circuit is separated and solved from overhang and non-overhang regions respectively. For the validation of proposed concept, 3-D finite element analysis (FEA) is performed. From the analysis results, it is shown that our new proposed method presents good performance in terms of calculating electromotive force (EMF) and torque within a short time. Therefore, the proposed model can be useful in design of IPM with an overhang structure.

Extended Kalman Filter Design for Sensorless Control of IPMSM Drive (IPMSM의 센서리스 운전을 위한 확장 칼만 필터 설계)

  • Jeon, Yong-Ho;Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1681-1690
    • /
    • 2013
  • In this paper, a design of speed and position controller based on the EKF(Extended Kalman Filter) for sensorless control in IPMSM(Interior Permanent Magnet Synchronous Motor) is proposed. The proposed method subdivides the state estimation interval for improving the accuracy of state estimation. and each subdivided interval estimated first order term using Taylor series. The proposed state estimator comparison with the second-order extended Kalman filter reduced calculation amount of a priori estimation. And the simulation results were proved that The accuracy of priori estimation is increased.

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

Improved Transition Method for Sensorless Operation of Interior Permanent Magnet Synchronous Motor Drives (매입형 영구자석 동기기 센서리스 구동부의 개선된 절환 기법)

  • Han, Dong Yeob;Yoon, Jae Seung;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1362-1368
    • /
    • 2016
  • This paper proposes the improved transition scheme for a sensorless drive of an interior permanent magnet synchronous motor (IPMSM). In order to operate the IPMSM, the current controller can be used until 300 rpm for the initial operation. After that, the control method of IPMSM is changed to the speed controller for the sensorless control method. At that point, the rotor speed overshoot is generated due to the rapid change of the current reference for the speed controller. The proposed algorithm is able to reduce the overshoot of a rotor speed by compensating the estimated feedforward value to the speed controller. The feedforward value of the current reference is estimated by using a coordinate transformation and is approximated to the current reference after the transition of the control mode. The effectiveness of the proposed scheme is verified by experiments using an IPMSM drive system.

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors

  • Lee, Kwang-Woon;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.604-614
    • /
    • 2012
  • This paper presents a comparative study of position sensorless control schemes based on back-electromotive force (back-EMF) estimation in permanent magnet synchronous motors (PMSM). The characteristics of the estimated back-EMF signals are analyzed using various mathematical models of a PMSM. The transfer functions of the estimators, based on the extended EMF model in the rotor reference frame, are derived to show their similarity. They are then used for the analysis of the effects of both the motor parameter variations and the voltage errors due to inverter nonlinearity on the accuracy of the back-EMF estimation. The differences between a phase-locked-loop (PLL) type estimator and a Luenberger observer type estimator, generally used for extracting rotor speed and position information from estimated back-EMF signals, are also examined. An experimental study with a 250-W interior-permanent-magnet machine has been performed to validate the analyses.

Study on The Electromagnetism of Interior Permanent Magnet Synchronous Motor due to Field Weakening (매입형 영구자석 동기전동기의 약계자 제어에 따른 전자기적 특성 연구)

  • Kwon, Soon-O
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.254-260
    • /
    • 2013
  • This paper deals with electromagnetic characteristics of IPMSM (Interior Permanent Magnet Synchronous motor) caused by field weakening current control. In order to extend operation speed, field weakening current control is generally used in IPMSM operation. During field weakening, distorted linkage fluxes are resulted by saturation of core material. Therefore, distorted input voltage waveform is required for sinusoidal current input. As the current vector angle increases for field weakening, distortion of linkage flux and back-emf becomes significant. This situation is analyzed by 2-dimensional finite element analysis and verified by experiment. With the results, it is concluded that motor parameters, such as linkage flux by permanent magnet, phase resistance, d-q axis inductance, are insufficient for estimating required voltage for given speed especially in field weakening and additional considerations for increased harmonics of voltage are required.

Assistant Model For Considering Slot-Opening Effect on No-load Air-gap Flux Density Distribution in Interior-type Permanent Magnet Motor (매입형 영구자석 전동기에서 무부하시 공극 자속밀도 분포에 대한 Slot-Opening Effect를 고려한 보조 모델)

  • Fang, Liang;Kim, Do-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.759-765
    • /
    • 2011
  • This paper proposes an effective assistant model for considering the stator slot-opening effect on air gap flux density distribution in conventional interior-type permanent magnet (IPM) motor. Different from the conventional slot-opening effect analysis in surface-type PM (SPM) motor, a composite effect of slot-opening uniquely existing in IPM motor, which additionally causes enhancement of air gap flux density due to magnet flux path distortion in iron core between the buried PM and rotor surface. This phenomenon is represented by a proposed assistant model, which simply deals with this additional effect by modifying magnetic pole-arc using an effective method. The validity of this proposed analytical model is applied to predict the air gap flux density distribution in an IPM motor model and confirmed by finite element method (FEM).