• Title/Summary/Keyword: intergranular attack

Search Result 14, Processing Time 0.02 seconds

CONSIDERATIONS FOR METALLOGRAPHIC OBSERVATION OF INTERGRANULAR ATTACK IN ALLOY 600 STEAM GENERATOR TUBES

  • HUR, DO HAENG;CHOI, MYUNG SIK;LEE, DEOK HYUN;HAN, JUNG HO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.934-938
    • /
    • 2015
  • This technical note provides some considerations for the metallographic observation of intergranular attack (IGA) in Alloy 600 steam generator tubes. The IGA region was crazed along the grain boundaries through a deformation by an applied stress. The direction and extent of the crazing depended on those of the applied stress. It was found that an IGA defect can be misevaluated as a stress corrosion crack. Therefore, special caution should be taken during the destructive examination of the pulled-out tubes from operating steam generators.

Signal Characteristics of Eddy Current Test for Intergranular Attack of Steam Generator Tubes (증기발생기 전열관의 입계부식에 대한 와전류검사 신호특성)

  • Choi, Myung-Sik;Lee, Deok-Hyun;Cho, Se-Gon;Yim, Chang-Jae;Han, Jung-Ho;Hur, Do-Haeng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.198-202
    • /
    • 2002
  • Beacuse intergranular attack (IGA), one of the locallized corrosion forms occurring on steam generator tubes, can not be fabricated by an electric discharge machining method, there are few data for the eddy current test (ECT) characteristics of IGA. In this paper, the characteristics of eddy current signals are evaluated using nonexpanded tubes with IGA defects formed in 0.1 M sodium tetrathionate solution at $40^{\circ}C$. The detectability and sizing accuracy of IGA were discussed in terms of the coil type and frequency of the ECT probes.

Effect of Precipitate on the Electrochemical Potentiokinetic Reactivation Behaviors of Stainless Steels and Nickel Base Alloys

  • Wu, Tsung-Feng;Chen, Tzu-Sheng;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.59-67
    • /
    • 2003
  • Electrochemical potentiokinetic reactivation (EPR) tests are used to evaluate the degree of sensitization (DOS) of stainless steels and nickel base alloys. The validity of EPR test to detect DOS of these alloys, however, depends all the electrolyte composition employed. The existence of precipitates such as NbC, and TiC, etc. in the alloys also affects the reactivation behaviors of these alloys. In this investigation, the reactions involved during EPR processes are analyzed. In 0.5 M $H_2SO_4$+ 0.01 M KSCN electrolyte, a reactivation peak associated with the localized attack around NbC, different from that of intergranular corrosion, is observed for the solution annealed 347 SS. For solution annealed Alloy 600, matrix corrosion and localized attack around TiC with distinct anodic peaks appeared in the EPR curves are seen in the $H_2SO_4$+ KSCN electrolyte. With proper adjustment of elect rolyte composition, the contribution from intergranular corrosion, as a result of chromium carbide precipitation along the grain boundaries, can be distingui shed from the matrix and localized corrosion for the sensitized Alloy 600.

A study on the KLA behaviors in HAZ and the mechanical properties of austenitic stainless steel weld (스테인레스강용접 열영향부의 KLA거동 및 기계적 특성에 관한 연구)

  • 조종춘;김영석;김학민
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.27-34
    • /
    • 1990
  • Integranular corrosion behaviors of KAL (Knife Line Attack) and mechanical properties such as tensile and creep rupture were investigated for the tube material used for nearly 20 years under the condition of 463.deg. C and 28 $kg/cm^2$. Based and weld metal were austenitic stainless steel AISI 321 containing Ti, AISI 347 containing Nb, respectively. KLA is a kind of the intergranular corrosion which often occurs just near the HAZ (heat affected zone) of AISI 321 and AISI 347 stainless steel due to the grain boundary sensitization. In KLA zone, intergranular corrosion crack has propagated outwards from the inner surface and carbides of white and narrow band type assuming as (Cr, Fe) carbide were confirmed. All the delta-ferrite formed in the weld metal during weld solidification has been transformed into sigma-phase since delta-ferrte was exposed for 20 years at 463.deg. C. Elongation was very low at the range from room temperature to 600.deg. C and it was confirmed that creep-rupture properties were not consideralbly affected.

  • PDF

Electrochemical Characteristics of Welded Stainless Steels Containing Ti (Ti 함유된 스테인리스강 용접부의 전기화학적 특성)

  • Choe Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.6
    • /
    • pp.227-233
    • /
    • 2005
  • Electrochemical characteristics of welded stainless steels containing Ti have been studied by using the electrochemical techniques in 0.5 M $H_2SO_4$+0.01 M KSCN solutions at $25^{\circ}C$. Stainless steels with 12 mm thick-ness containing $0.2{\~}0.9 wt\%$ Ti were fabricated with vacuum melting and following rolling process. The stainless steels were solutionized for 1hr at $1050^{\circ}C$ and welded by MIG method. Samples were individually prepared with welded zone, heat affected zone, and matrix for intergranular corrosion and pitting test. Optical microscope, XRD and SEM are used for analysing microstructure, surface and corrosion morphology of the stainless steels. The welded zone of the stainless steel with lower Ti content have shown dendrite structure mixed with $\gamma$ and $\delta$ phase. The Cr-carbides were precipitated at twin and grain boundary in heat affected zone of the steel and also the matrix had the typical solutionized structure. The result of electrochemical measurements showed that the corrosion potential of welded stainless steel were Increased with higher Ti content. On the other hand, reactivation($I_r$), passivation and active current($I_a$) density were decreased with higher Ti content. In the case of lower Ti content, the corrosion attack of welded stainless steel was remarkably occurred along intergranular boundary and ${\gamma}/{\delta}$ phase boundary in heat affected zone.

C-Ring Stress Corrosion Test for Inconel 600 Tube and Inconel 690 welded by Nd:YAG Laser (Nd:YAG 레이저로 용접한 인코넬 600관과 인코넬 690의 C링 응력 부식시험)

  • 김재도;문주홍;정진만;김철중
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.288-291
    • /
    • 1998
  • Inconel 600 alloy is used as the material of nuclear steam generator tubing because of its mechanical properties, formability, and corrosion properties. According to reports, the life time of nuclear power plants decreases because of the pitting, intergranular attack, primary water stress corrosion cracking(PWSCC), and intergranular stress corrosion cracking(IGSCC), and denting in the steam generator. The SCC test is very important because of SCC appears in various environment such as solutions, materials, and stress. The C-Rig specimen was made of the steam generator welded sleeve repairing by the pulsed Nd:YAG laser. In the corrosion invironment, corrosion solutions are Primary Water, Caustic, and Sulfate solution and corrosion time is 1624-4877hr. The permitted stress is 30-60ksi.In this C-Ring SCC test is the relationship between corrosion depth, crack and corrosion environment is evaluated. SCC was happens in Sulfate and Corrosion solution but doesn't happen in Primary Water. The corrosion time and stress is very affected by the severely environment of Sulfate or Caustic solution. The microstructure observation indicates that SCC causes interganular failure in the grain boundary of vertical direction.

  • PDF

Mechanical Strength Evaluation of A53B Carbon Steel Subjected to High Temperature Hydrogen Attack

  • Kim, Maan-Won;Lee, Joon-Won;Yoon, Kee-Bong;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • In this study mechanical strength of A53B carbon steel was analyzed using several types of test specimens directly machined from oil recycling pipe experienced a failure due to hydrogen attack in chemical plants. High temperature hydrogen attack (HTHA) is the damage process of grain boundary facets due to a chemical reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow on grain boundaries forming intergranular micro cracks. Microscopic optical examination, tensile test, Charpy impact test, hardness measurement, and small punch (SP) test were performed. Carbon content of the hydrogen attacked specimens was dramatically reduced compared with that of standard specification of A53B. Traces of decarburization and micro-cracks were observed by optical and scanning electron microscopy. Charpy impact energy in hydrogen attacked part of the pipe exhibited very low values due to the decarburization and micro fissure formation by HTHA, on the other hand, data tested from the sound part of the pipe showed high and scattered impact energy. Maximum reaction forces and ductility in SP test were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Finite element analyses for SP test were performed to estimate tensile properties for untested part of the pipe in tensile test. And fracture toughness was calculated using an equivalent strain concept with SP test and finite element analysis results.

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge;Nikiforova, Anna;Yip, Sidney
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-38
    • /
    • 2009
  • The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.

A Study on Damage Evaluation Austenitic Stainless Steel Tube Material (오스테나이트계 내식강 튜브 소재의 손상진단에 관한 연구)

  • Jo, Jong-Chun;Kim, Yeong-Seok;Kim, Hak-Min;Jeong, Hyeong-Jo
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.43-52
    • /
    • 1989
  • Material damage of Unifiner Change Heater: Tube used for nearly 20 years was evaluated and Mechanical tests such as tensile tests and creep-rupture tests were conducted to predict the residual life. After the investigation, any major damage or degradation was not found except the welded zone. Microstructural observation showed that most of delta-ferrite was transformed. to sigma-phase and consequently, the ductility was very much reduced. A KLA(Knife-Line Attack) crack with 60mm in length and 2.8mm in depth was found just near the welded zone, which is believed to be caused by intergranular corrosion. Creep-rupture tests, which are very essential to predict the residual life, showed that both used base and weld metals have similar results with the reference data.

  • PDF

The Integrity Verification of Tube-end Sleeve by ECT (와전류탐상검사에 의한 튜브엔드 슬리브 건전성 검증)

  • Kim, Su Jin;Kwon, Kyung Joo;Suk, Dong Hwa;Park, Ki Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • Steam generator(S/G) tubes in pressurized water reactor (PWR's) are subject to several types of degradation. This degradation includes denting, pitting, intergranular attack(IGA), intergranular stress corrosion cracking(IGSCC), fatigue, fretting and wear. Degradation can be derived from either the primary side(inside) or the secondary side(outside) of the tube. Recent issue for tube degradation in domestic steam generator is the tube end cracking on seal weld region. The seal weld region at the tube end and tube itself is regarded as a pressure boundary between the primary side and the secondary side. One of the Westinghouse Model-F S/G has experienced tube end cracking and its number of plugging approximately becomes to the operating limit up to 5% due to tube end cracking which was reported as SAI/MAI(single/multiple axial indication) or SCI/MCI(Single/multiple circumferential indication) from the results of eddy current testing. Eddy current mock-up test was carried out to determine the origin of cracking whether it is from weld zone area or parent tube. This result was helpful to analyze crack location on ECT data. Correct action on this problem was the installation of tube-end sleeve. Last year, after removing 340 installed plugs from tubes, selected 269 tubes took tube-end sleeve installation. Tube-end sleeve brought pressure boundary from parent tube to installed sleeve tube. Tube-end sleeve has the benefit of reducing outage period and increasing more revenue than replacing S/G. This paper is provided to assist interest parties in effectively understanding this issue.