• Title/Summary/Keyword: interferogram

Search Result 74, Processing Time 0.02 seconds

SAR Interferometry Phase Unwrapping 비교 분석: Branch cut, Minimum discontinuity 및 Minimum $L^p$-norm 방법을 중심으로

  • 김상완;이효재;원중선
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.96-101
    • /
    • 2000
  • SAR(Synthetic Aperture Radar) interferometry 기술은 co-registration, 정밀궤도 계산, phase unwrapping, 지형보정과 같은 기술로 구성되어있다. 구속화된 위상값을 절대 위상값으로 변환하는 과정인 phase unwrapping 기술은 정밀지형고도를 얻는데 있어서 핵심기술이다. 본 연구에서는 JERS-1 SAR 영상으로부터 interferogram을 구하고, 이로부터 추출된 위상정보를 이용하여 branch cut(Goldstein et. al, 1988), minimum discontinuity(Flynn, 1997) 그리고 minimum $L^p$-norm(Ghiglia and Romero, 1996)방법 적용결과에 대한 비교 분석을 실시하였다. Goldstein 알고리즘은 수행속동가 매우 빠르지만 residue를 연결한 branch cut에 의해 분활된 영역 내에서, 서로 다른 적분 경로로 인해 위상이 단절되었다. 영상내의 모든 화소에서 절대 위상을 구한 minimum discontinuity와 minimum $L^p$-norm 알고리즘 수행 결과는 상관관계가 0.995로 매우 유사하였는데, 가중된 불연속선의 합을 최소화하는 minimum discontinuity 알고리즘이 minimum $L^p$-norm에 비해 영상 일부 지역에서 발생하는 위상 오차를 전파시키지 않는다는 장점이 있다. Minimum $L^p$-norm 방법은 다른 두 방법과 달리 위상정보 내에 많은 잡음이 있더라도 적절한 해를 구할 수 있다는 장점이 있다. 각 방법은 대상 자료의 특성에 따라 효율성이 있으나 Flynn의 알고리즘이 지역적 특성과 무관하게 가장 효과적임을 알 수 있었다.

  • PDF

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.

Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry (멀티간섭기법에 기반한 이온왜곡 보정기법의 보완)

  • Lee, Won-Jin;Jung, Hyung-Sup;Chae, Sung-Ho;Baek, Wonkyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 2015
  • Synthetic Aperture Radar Interferometry (InSAR) is affected by various noise source such as atmospheric artifact, orbital error, processing noise etc.. Especially, one of the dominant noise source for long-wave SAR system, such as ALOS PALSAR (L-band SAR satellite) is the ionosphere effect because phase delays on radar pulse through the ionosphere are proportional to the radar wavelength. To avoid misinterpret of phase signal in the interferogram, it is necessary to detect and correct ionospheric errors. Recently, a MAI (Multipler Aperture SAR Interferometry) based ionospheric correction method has been proposed and considered one of the effective method to reduce phase errors by ionospheric effect. In this paper, we introduce the MAI-based method for ionospheric correction. Moreover we propose an efficient method that apply the method over non-coherent area using directional filter. Finally, we apply the proposed method to the ALOS PALSAR pairs, which include the west sea coast region in Korea. A polynomial fitting method, which is frequently adopted in InSAR processing, has been applied for the mitigation of phase distortion by the orbital error. However, the interferogram still has low frequency of Sin pattern along the azimuth direction. In contrast, after we applied the proposed method for ionospheric correction, the low frequency pattern is mitigated and the profile results has stable phase variation values within ${\pm}1rad$. Our results show that this method provides a promising way to correct orbital and ionospheric artifact and would be important technique to improve the accuracy and the availability for L-band or P-band systems.

Application of 2-pass DInSAR to Improve DEM Precision (DEM 정밀도 향상을 위한 2-pass DInSAR 방법의 적용)

  • 윤근원;김상완;민경덕;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.231-242
    • /
    • 2001
  • In 2-pass differential SAR interferometry(DInSAR), the topographic phase signature can be removed by using a digital elevation model(DEM) to isolate the contribution of deformation from interferometric phase. This method has an advantage of no unwrapping process, but applicability is limited by precision of the DEM used. The residual phase in 2-pass differential interferogram accounts for error of DEM used in the processing provided that no actual deformation exits. The objective of this paper is a preliminary study to improve DEM precision using low precision DEM and 2-pass DInSAR technique, and we applied the 2-pass DInSAR technique to Asan area. ERS-1/2 tandem complex images and DTED level 0 DEM were used for DInSAR, and the precision of resulting DEM was estimated by a 1:25,000 digital map. The input DEM can be improved by simply adding the DInSAR output to the original low precision DEM. The absolute altitude error of the improved DEM is 9.7m, which is about the half to that of the original DTED level 0 data. And absolute altitude error of the improved DEM is better than that from InSAR technique, 15.8m. This approach has an advantage over the InSAR technique in efficiently reducing layover effects over steep slope region. This study demonstrates that 2-pass DInSAR can also be used to improve DEM precision.

Spatial Resolution Enhancement with Fiber - based Spectral Filtering for Optical Coherence Tomography

  • Choi, Eun-Seo;Na, Ji-Hoon;Lee, Byeong-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • We report a technique that improves the spatial resolution of optical coherence tomography (OCT) by utilizing fiber-based spectral filtering. The proposed technique improves the resolution by filtering out the erbium’s characteristic peak from the amplified spontaneous emission (ASE) source spectrum, and reshaping the spectrum to Gaussian-like. We used a long period fiber grating (LPG) and an erbium doped fiber (EDF) absorber for the spectral filtering. An in-house made ASE source as well as a commercial ASE source [ASE-FL7002] was used as the OCT sources to study the proposed technique. The resolution of the OCT based on an in-house made ASE source is enhanced from 200 to 40 ㎛ with an LPG. While, the resolution of the OCT based on a commercial ASE source is enhanced from 25 to 19 ㎛ with the aid of an EDF absorber. However, sidelobes still exist in the interferogram due to imperfect spectral filtering, which limited the resolution. Further enhancement in the spatial resolution of the OCT system using the ASE source is possible with the aid of cascaded LPGs and/or carefully designed EDF absorber.

SPECIAL CONSIDERATION ON THE RADARSAT REPEAT-PASS SAR INTERFEROMETRY

  • Kim, Sang-Wan;Won, Joong-Sun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.474-478
    • /
    • 1999
  • SAR interferometry (InSAR) using the space-borne Synthetic Aperture Radar (SAR) have recently become one of the most effective tools monitoring surface changes caused by landslides, earthquakes, subsidences or volcanic eruption. This study focuses on examining the feasibility of InSAR using the RADARSAT data. Although the RABARSAT SAR with its high resolution and variable incidence angle has several advantages for repeat-pass InSAR, it has two key limitations: first, the orbit is not precisely known; and second, RADARSAT's 24-day repeat pass interval is not very favourable for retaining useful coherence. In this study, two pairs of RADARSAT data in the Nahanni area, NWT, Canada have been tested. We will discuss about the special consideration required on the interferometric processing steps specifically for RADARSAT data including image co-registration, spectral filtering in both azimuth and range, estimation of the interferometric baseline, and correction of the interferogram with respect to the "flat earth" phase contribution. Preliminary results can be summarized as: i) the properly designed azimuth filter based upon the antenna characteristic improves coherence considerably if difference in Doppler centroid of the two images is relatively large; ii) the co-registration process combined by fringe spectrum and amplitude cross-correlation techniques results in optimal matching; iii) the baseline is not always possible to be estimated from the definitive orbit information.

  • PDF

Monochromatic Image Analysis of Elastohydrodynamic Lubrication Film Thickness by Fringe Intensity Computation

  • Jang, Siyoul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1704-1713
    • /
    • 2003
  • Point contact film thickness in elastohydrodynamic lubrication (EHL) is analyzed by image processing method for the images from an optical interferometer with monochromatic incident light. Interference between the reflected lights both on half mirror Cr coating of glass disk and on super finished ball makes circular fringes depending on the contact conditions such as sliding velocity, applied load, viscosity-pressure characteristics and viscosity of lubricant under ambient pressure. In this situation the film thickness is regarded as the difference of optical paths between those reflected lights, which make dark and bright fringes with monochromatic incident light. The film thickness is computed by numbering the dark and bright fringe orders and the intensity (gray scale image) in each fringe regime is mapped to the corresponding film thickness. In this work, we developed a measuring technique for EHL film thickness by dividing the image patterns into two typical types under the condition of monochromatic incident light. During the image processing, the captured image is converted into digitally formatted data over the contact area without any loss of the image information of interferogram and it is also interpreted with consistency regardless of the observer's experimental experience. It is expected that the developed image processing method will provide a valuable basis to develop the image processing technique for color fringes, which is generally used for the measurement of relatively thin films in higher resolution.

Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique (레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보점용접부의 면외 변위측정)

  • 백태현;김명수;차병석;조성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.226-230
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The spekle patterns to be formed with interference phenomena of scattering phenomena measure the out-of-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and the display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-0of-plane displacements of a spot welded canti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded canti-levered plate is quite different from that of the canti-levered plate without spot welding.

  • PDF

Subsidence Observation of time-series surface deformation at New Orleans using Differential SAR Interferometry (레이더 차분간섭기법을 이용한 뉴올리언스 지역의 시간에 따른 지표변위 관측)

  • Jo, Min-Jeong;Lee, Chang-Wook;Park, Jeong-Won;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.148-152
    • /
    • 2008
  • 뉴올리언스는 미시시피 강 하구에 위치하였으며 지난 2005년 허리케인 카트리나에 의해 큰 침수 피해를 입은 지역이다. 이 도시는 신생대 지층에 자리하고 있어 미고결층의 다짐작용 및 단층작용으로 최대 29mm 정도의 연간 침하율을 보여 왔다. 뉴올리언스의 계속된 침하작용은 평균해수면보다 낮은 지역에 위치한 도시의 침수위험성을 가중시키고 있어 현재 이에 관한 많은 연구가 진행되고 있다. SAR영상을 이용한 차분간섭기법(DInSAR, Differential Interferometry of SAR)은 지반침하, 지진, 화산활동 등과 같이 수십 km$^2$에 걸쳐 발생하는 지표변위를 수cm-수mm의 정밀도로 관측 가능한 기술이다. 이 연구에서는 차분간섭기법을 이용하여 2005년 2월부터 2007년 2월까지 촬영된 21개의 RADARSAT-1 Fine beam mode(F5) 영상으로부터 25개의 차분간섭영상(DInSAR Interferogram)을 생성하였다. 또한 차분간섭도의 spatial decorrelation을 극복하고 시간에 따른 LOS 방향의 변위를 관측하기 위해 분석 알고리즘으로는 보완된 SBAS(small baseline subset)기법을 이용하였으며, 이 기법을 이용하여 대기의 영향 및 노이즈를 제거한 결과를 얻을 수 있었다. 우리는 LOS방향의 2차원 변위분포 맵을 작성하였으며, 그 결과 전체적인 침하율은 크지 않지만, 도시의 서쪽지점에서 나타나는 상대적으로 큰 -1.49cm/yr의 변위 값과 동쪽 지점에서 0.33cm/yr의 변위 값을 관측하였다. 이 같은 결과는 앞으로의 연구에서 실측 데이터 및 동일기간의 다른 SAR영상자료의 연구를 통해 보완해 나갈 것이다.

  • PDF

Detection of White Light Interference Peak Position utilizing Analog Signal Processing (아날로그 신호처리를 이용한 백색광 간섭 피크의 검출)

  • Yeh, Yun-Hae;Lee, Jong-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • A signal processing method for white light interferometry (WLI), which performs a series of analog signal processing steps to locate the central interference fringe position at high speed: is developed and applied to a WLI temperature sensor system. We found that the new method has random walk of $0.019^{\circ}C/\sqrt{Hz}$ with good linearity. However, the temperature change in the path-matching interferometer results in drift of the measured sensor output. The temperature dependence of drift in the WLI temperature sensor system, was calculated to be $1.42{\mu}m/^{\circ}C$. It is also found that the relationship between the peak spacing in the interferogram and the spacing measured by the method can be nonlinear when the fringe spacing is comparable to the coherence length of the source.