• 제목/요약/키워드: interference theory of light

검색결과 19건 처리시간 0.025초

빛의 간섭성 이론 (Modern Coherence Theory of Light)

  • 김기식;이종민
    • 한국광학회지
    • /
    • 제2권1호
    • /
    • pp.36-49
    • /
    • 1991
  • The coherence properties of electromagnetic fields are reviewed, based on both the classical and quantum theories. The elementary concepts, employed frequently in the discussion of interference phenomena, are summarized. The well-known interference phenomena are described in terms of second-order coherences. The coherence theory in space-frequency domain is introduced and the coherent mode representation is presented. The generation and propagation of coherence of light are analysed and it is shown that the coherence of light is developed as light propagates. The quantum theory goes parallel with the classical theory, via the optical equivalence theorem. There are, however, certain nonclassical characteristics of light, which may not be easily understood in classical therms. These nonclassical phenomena are believed to originate from the particle aspects of light. The quantum effect on the interfernce phenomena is analysed and finally the outlook of the future research is briefly mentioned.

  • PDF

Extension of the Rotating Planar Waveguide Model to Formation of Interference Patterns in Optical Fibers

  • Pena-Garcia, Antonio;Perez-Ocon, Francisco;Jimenez, Jose Ramon
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.128-131
    • /
    • 2011
  • After the successful extension of the rotating planar waveguide model to Wave Optics, where a clear identification between the angular velocity of one hypothetical waveguide and the phase differences between two points on the path of one bounded mode was found, an application of the model to explain the interference theory is presented. We demonstrate that, for two bounded modes to create an interference pattern, a constrain to the relative parameters among both is imposed by the fiber optics. This result, not reported in the literature up to date, provides a new horizon to understand the interaction light-light when propagated within optical fibers.

창의적 과학자 토마스 영(T. Young)의 빛의 간섭 이론 형성과정에서의 비유추론을 통한 문제해결과 과학창의성 교육적 함의 (Thomas Young's Problem Solving through Analogical Reasoning in the Process of Light Inference Theory Formation and Its Implications for Scientific Creativity Education)

  • 김원숙;김영민;서혜애;박종석
    • 영재교육연구
    • /
    • 제23권5호
    • /
    • pp.817-833
    • /
    • 2013
  • 본 연구에서는 토마스 영(T. Young)이 빛의 간섭 이론을 형성하는 과정에서 보인 창의적 사고과정을 분석하여 과학교육 특히 과학을 통한 창의성 교육에 대한 시사점을 도출하는 데 목적을 두었다. 이를 위해 영(Young)이 직접 집필한 빛의 간섭 이론에 대한 논문을 분석하는 문헌분석의 연구방법을 적용하였다. 연구결과는 다음과 같다. 첫째, 영은 소리와 빛의 유사성을 추론하는 과정에서 비유추론을 사용했으며, 이 과정에서 영의 예리한 관찰력을 볼 수 있다. 둘째, 영은 파장이 같은 두 물결파가 나타내는 파동의 간섭 현상으로부터 귀추하여, 같은 근원의 두 빛이 어떤 거리에서 중첩될 때 밝고 어두운 연속적 무늬를 나타낼 수 있음을 추론하고 빛의 간섭 현상을 설명하는 가설을 설정하게 된다. 그리고 실험 장치를 개발하여 이를 증명하였으며 이것은 빛이 파동임을 증명하는 결정적인 실험이 된다. 이것으로부터 전혀 다를 것 같은 소리와 빛 사이의 유사성을 영이 발견한 것도 창의적이지만 그 유사성을 좀 더 높은 수준의 '파동성'으로 추론한 것뿐만 아니라 동일한 빛이 갈라졌다가 만날 때 밝고 어두운 무늬를 보이는 현상이 두 물결파가 만나 보강과 소멸을 보이는 현상과 동일한 이론으로 설명될 수 있음을 추론하여 빛의 간섭 현상을 설명하는 가설을 추론한 것 또한 성공한 귀추의 하나로 중요한 창의성 발현에 속한다. 끝으로 영은 물결파의 간섭현상을 보이기 위해 실험 장치를 고안하였으며, 파동의 중첩을 쉽게 설명하기 위해 슬라이더 장치를 고안하였다. 또한 빛의 간섭 현상을 보이기 위한 이중 슬릿 실험 장치를 고안하였다. 이상과 같이 영의 빛의 간섭 이론을 형성하는데 활용한 비유추론과 간섭 현상을 보이기 위한 실험 장치는 과학교육에서 창의성 교육에 적절히 활용할 수 있는 교육방법과 실험설계이다.

3D Measurement of TSVs Using Low Numerical Aperture White-Light Scanning Interferometry

  • Jo, Taeyong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.317-322
    • /
    • 2013
  • We have proposed and demonstrated a low numerical aperture technique to measure the depth of through silicon vias (TSVs) using white-light scanning interferometry. The high aspect ratio hole like TSV's was considered to be impossible to measure using conventional optical methods due to low visibility at the bottom of the hole. We assumed that the limitation of the measurement was caused by reflection attenuation in TSVs. A novel interference theory which takes the structural reflection attenuation into consideration was proposed and simulated. As a result, we figured out that the low visibility in the interference signal was caused by the unbalanced light intensity between the object and the reference mirror. Unbalanced light can be balanced using an aperture at the illumination optics. As a result of simulation and experiment, we figured out that the interference signal can be enhanced using the proposed technique. With the proposed optics, the depth of TSVs having an aspect ratio of 11.2 was measured in 5 seconds. The proposed method is expected to be an alternative method for 3-D inspection of TSVs.

Scheduling with Heterogeneous QoS Provisioning for Indoor Visible-light Communication

  • Dong, Xiaoli;Chi, Xuefen;Sun, Hongliang;Zhu, Yuhong
    • Current Optics and Photonics
    • /
    • 제2권1호
    • /
    • pp.39-46
    • /
    • 2018
  • Visible-light communication (VLC) combined with advanced illumination can be expected to become an integral part of next-generation communication networks. One of the major concerns in VLC implementation is developing resource-allocation schemes in a multi-user scenario. However, the scheduling for heterogeneous quality of service (QoS) traffic has not been studied so far, for the indoor VLC downlink system. In this paper, we creatively introduce effective-bandwidth and effective-capacity theory into the multi-user scheduling (MUS) problem, to guarantee the user's statistical delay QoS. We also take account of the aggregate interference (AI) in the indoor VLC downlink system, and analyze its impact on the user-centric MUS problem for the first time. Simulations show that the AI has a nonnegligible influence on the scheduling result, and that the proposed scheduling scheme could guarantee the user's QoS requirement under the premise of ensuring sum capacity.

Michelson 간섭계에 의한 고체의 선팽창계수 측정방법 (Measurement Method of Linear Expansion Coefficient for Solid Matter using Michelson Interferometer)

  • 김홍균;김영선
    • 공학교육연구
    • /
    • 제16권2호
    • /
    • pp.24-30
    • /
    • 2013
  • This paper deals with the measurement theory and technique of linear expansion coefficient for solid material using Michelson interferometer. The Michelson interferometer produces interference fringes by splitting a beam of monochromatic light so that one beam strikes a fixed mirror and the other a movable mirror. When the reflected beams are brought back together, an interference pattern results. Precise distance measurements until a quarter of wave length can be made with the Michelson interferometer by moving the mirror and counting the interference fringes which move by a photo diode. This paper represents the application of Michelson interferometer for measuring infinitesimal length system and shows the measurement method of linear expansion coefficients for various materials like copper, aluminum and iron. the results are good agreement with theoretical value within margin of error for each materials.

A Robust Algorithm for Roughness Laser Measurement based on Light Power Regulation against Specimen Changes

  • Seo Young Ho;Ahn Jung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1131-1137
    • /
    • 2005
  • Methods for measuring surface roughness based on light reflectivity have advantages over methods based on light interference or diffraction, especially in in-situ, on-the-machine and in-process applications. However, measurement inconsistencies caused by changes in the specimen are still a drawback for field applications. In this study, we propose a new feedback-based algorithm to enhance the consistency against changes in the specimen. The algorithm is deduced from simulations based on light reflectance theory with typical modeled surfaces. The proposed method is similar to a digital controller and regulates the power of reflected light. Experiments varying heights and materials, verified the improvements in robustness of the method against measurement disturbances caused by specimen changes.

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.

Study of Stray-light Analysis and Suppression Methods for the Spectroscopic System of a Solar-radiation Observer Instrument

  • Zheng, Ru;Liu, Bo;Wang, Lingyun;Gao, Yue;Li, Guangxi;Li, Changyu
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.220-228
    • /
    • 2021
  • To improve the measurement accuracy of a solar-radiation observer instrument, aiming at the problem of multiorder-stray-light interference caused by the diffraction of the flat-field concave grating in the spectroscopic system, straylight suppression methods for different forms of optical traps are studied. According to the grating surface-scattering distribution-function model, the bidirectional scattering distribution function (BSDF) of a dust-polluted surface and the flat-field concave grating's transition area of the spectroscopic system is calculated, and a Lyot stop with blade baffle is designed to suppress this kind of stray light. For diffraction multiorder stray light, based on the theory of light-energy transmission, a design for precise positioning of the trench optical trap is proposed. The superiority of the method is verified through simulation and actual measurement. The simulation results show that in a spectroscopic system approximately 160 mm × 140 mm × 80 mm in size, the energy of the stray light is reduced by one order of magnitude by means of the trench optical trap and Lyot stop, and the number of beams is reduced from 5664 to 1040. The actual measurements show that the stray-light-suppression efficiency is about 69.4%, which is effective reduction of the amount of stray light.

Quantum Entanglement of Dark Matter

  • Lee, Jae-Weon
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1596-1602
    • /
    • 2018
  • We suggest that the dark matter in the universe has quantum entanglement if the dark matter is a Bose-Einstein condensation of ultra-light scalar particles. In this theory, any two regions of a galaxy are quantum entangled due to the quantum nature of the condensate. We calculate the entanglement entropy of a typical galactic halo, which turns out to be at least O(ln(M/m)), where M is the mass of the halo and m is the mass of a dark matter particle. The entanglement can be inferred from the rotation curves of the galaxy or the interference patterns of the dark matter density.