• Title/Summary/Keyword: interfacial tension

Search Result 186, Processing Time 0.028 seconds

Measurement of an Isoelectric Point and Softness of a Zwitterionic Surfactant (양쪽성 계면활성제의 등전점 및 유연력 측정에 관한 연구)

  • Lim, Jongchoo;Kim, Jisung;Mo, Dahee;Lee, Jinsun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.112-118
    • /
    • 2012
  • In this study, physical properties of synthesized DE7-OSA82-AO and DEP52-OSA82-AOQ82 zwitterionic surfactants were measured such as critical micelle concentration, surface tension, interfacial tension, contact angle and viscosity. Phase behavior study was also performed. The dual function characteristics of a zwitterionic surfactant were investigated by determining an isoelectric point, which was attained using zeta potential measurements and QCM (quartz crystal microbalance) experiments. The isoelectric point of DE7-OSA82-AO surfactant determined by the zeta potential measurement and QCM experiment was about 7.2 and 7.4, respectively. On the other hand, the isoelectric point of DEP52-OSA82-AOQ82 surfactant determined by the zeta potential measurement and QCM experiment was about 10.9 and 11.0, respectively. The frictional property measured using an automated mildness tester showed that DE7-OSA82-AO surfactant can provide a good softening effect at an acidic or neutral condition. On the other hand, DEP52-OSA82-AOQ82 was found to provide a good softening effect to a fabric surface at a pH below its isoelectric point of 11.

Measurement of an Isoelectric Point and Softness of a EO-PO Adducted Zwitterionic Surfactant (EO-PO가 부가된 양쪽성 계면활성제의 등전점 및 유연력 측정에 관한 연구)

  • Lim, JongChoo;Mo, DaHee;Lee, JinSun;Park, JunSeok;Han, DongSung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, the measurement of physical properties of ethylene oxide-propylene oxide adducted zwitterionic surfactants were measured such as critical micelle concentration, surface tension, interfacial tension, contact angle, viscosity and foam stability. Also, the dual function characteristics of a zwitterionic surfactant were investigated by determining an isoelectric point, which were obtained using zeta potential measurement and QCM (quartz crystal microbalance) experiments. The isoelectric point of DEP-OSA82-AO zwitterionic surfactant determined by zeta potential measurement was close to that obtained by QCM experiment and both results have shown almost the same trend as that determined by the frictional property measured using an automated mildness tester. In particular, it has been observed that DEP32-OSA82-AO and DEP34-OSA82-AO surfactants provide better softening effect at a pH of acidic or neutral condition than at an alkaline condition. This result indicates that both surfactants act as a cationic surfactant at a pH of acidic or neutral condition and thus provide good softening effect during a rinsing cycle in the detergency process.

A Study on Isoelectric Point and Softness of an Ethylene Oxide Adducted Amphoteric Surfactant (에틸렌 옥사이드가 부가된 양쪽성 계면활성제의 등전점 및 유연력에 관한 연구)

  • Lim, JongChoo;Park, JunSeok;Han, DongSung;Kim, JiSung;Lee, Seul;Mo, DaHee;Lee, JinSun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.521-528
    • /
    • 2012
  • In this study, we analyzed the physical properties of an ethylene oxide adducted amphoteric surfactant such as critical micelle concentration, surface tension, interfacial tension, contact angle, viscosity and phase behavior. The dual function characteristics of an amphoteric surfactant were investigated by determining an isoelectric point, which were attained using zeta potential measurements and quartz crystal microbalance (QCM) experiments. The isoelectric points of DE3-OSA82-AO, DE5-OSA82-AO and DE9-OSA82-AO surfactant systems determined by zeta potential measurements were 6.97, 6.93 and 7.10 respectively and they are in good agreement with the isoelectric point values measured by QCM experiments. The frictional property measured using an automated mildness tester showed that the DE-OSA82-AO surfactant could provide a good softening effect at neutral condition.

Production of a New Biosurfactant by a New Yeast Species Isolated from Prunus mume Sieb. et Zucc.

  • Jeong-Seon Kim;Miran Lee;Dae-Won Ki;Soon-Wo Kwon;Young-Joon Ko;Jong-Shik Kim;Bong-Sik Yun;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1023-1029
    • /
    • 2023
  • Biosurfactants reduce surface and interfacial tension due to their amphiphilic properties and are an eco-friendly alternative for chemical surfactants. In this study, a new yeast strain JAF-11 that produces a biosurfactant was selected using drop collapse method, and the properties of the extracts were investigated. The nucleotide sequences of the strain were compared with closely related strains and identified based on the D1/D2 domain of the large subunit ribosomal DNA (LSU) and internal transcribed spacer (ITS) regions. Neodothiora populina CPC 39399T, the closest species with strain JAF-11, showed a sequence similarity of 97.75% for LSU and 94.27% for ITS, respectively. The result suggests that the strain JAF-11 represents a distinct species that cannot be assigned to any existing genus or species in the family Dothideaceae. Strain JAF-11 produced a biosurfactant reducing the surface tension of water from 72 mN/m to 34.5 mN/m on the sixth day of culture and the result of measuring the critical micelle concentration (CMC) by extracting the crude biosurfactant was found to be 24 mg/l. The molecular weight 502 of the purified biosurfactant was confirmed by measuring the fast atom bombardment mass spectrum. The chemical structure was analyzed by measuring 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMRs of the compound. The molecular formula was C26H46O9, and it was composed of one octanoyl group and two hexanoyl groups to myo-inositol moiety. The new biosurfactant is the first report of a compound produced by a new yeast strain, JAF-11.

Design of Fiber Reinforced Cement Matrix Composite Produced with Limestone Powder and Flexural Performance of Structural Members (석회석 미분말을 혼입한 시멘트계 매트릭스 섬유복합재료의 설계 및 구조부재의 휨성능)

  • Hyun, Jung-Hwan;Kim, Yun-Yong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.328-335
    • /
    • 2016
  • The purpose of this study is to develop fiber reinforced cement matrix composite (ECC) produced with limestone powder in order to achieve high ductility of the composite, and to evaluate flexural performance of structural members made with ECC. Four kinds of mixture proportions were determined on the basis of the micromechanics and a steady state cracking theory considering the matrix fracture toughness and fiber-matrix interfacial characteristics. The mechanical properties of ECC, represented by strain-hardening behavior in uniaxial tension, were investigated. Also, strength property of the composite was experimentally evaluated. Two structural members made with ECC were produced and tested. Test results were compared with those of conventional concrete structural members. Increased limestone powder contents of ECC provides higher ductility of the composites while generally resulting in a lower strength property. ECC structural members exhibited higher flexural ductility, higher flexural load-carrying capacity and tighter crack width compared to conventional structural members.

Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals

  • Yu, Hye-Min;Kim, Ah-Ram;Moon, Jun-Hyuk;Lim, Jong-Sung;Choi, Kyu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2178-2182
    • /
    • 2011
  • Recently, the synthesis of ordered macroporous materials has received much attention due to its potential use as photonic band gap materials.$^1$ In this study, we have used the three-dimensional (3D) latex array template impregnated with benzenesulfonic acid (BSA), which is capable of catalyzing the reaction using tetraethyl orthosilicate (TEOS) as a precursor and distilled water. The polystyrene (PS) templates were reacted with TEOS in $scCO_2$ at 40 $^{\circ}C$ and at 80 bar. In the reactor, TEOS was filtrated into the PS particle lattice. After the reaction, porous silica materials were obtained by calcinations of the template. The stability test of the PS template in pure $CO_2$ was conducted before the main experiment. Scanning electron microscopy (SEM) images showed that the reaction in $scCO_2$ takes place only on the particle surface. This new method using $scCO_2$ has advantages over conventional sol-gel processes in its capability to control the fluid properties such as viscosity and interfacial tension. It has been found that the reaction in $scCO_2$ occurs only on the particle surface, making the proposed technique as more rapid and sustainable method of synthesizing inverse opal materials than conventional coating processes in the liquid phase and in the vapor phase.

Preparation and Properties of D Phase Emulsion by Silicone Oil (계면활성제 유화법에 의한 D상 유화물 제조와 특성)

  • Kim, Hyung-Jin;Jeong, Noh-Hee;Kim, Hong-Soo;Lee, Seung-Yeul;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.809-813
    • /
    • 1999
  • D phase emulsification has been developed and elucidated the emulsification mechanism by using phase diagrams. The process of D phase emulsification begins with the formation of isotropic surfactant solution, follows by formation of oil-in-surfactant (O/D) gel emulsion by dispersion of octamethylcyclotetra siloxane(OMCS) in the surfactant solution. Polyols were essential components for this experiments. To understand the function of polyols, the solution behaviors of nonionic surfactant/oil/water/polyol systems were investigated by the ternany phase diagrams of polyoxyethylene oleyl ether/OMCS/propylene glycol(PG) aqueous solutions. The solubility of oil in the isotropic surfactant phase was increased with the addition of PG. D phase emulsion was formed in the range of 70~90% of OMCS and 2.0~3.0 dyne/cm of interfacial tension and the structure was homogenious spherical and O/W type and its diameter was about $10{\mu}m$.

  • PDF

Tensile strength of bilayered ceramics and corresponding glass veneers

  • Anunmana, Chuchai;Champirat, Tharee;Jirajariyavej, Bundhit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • PURPOSE. To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS. Blocks of core ceramics (IPS e.max$^{(R)}$ Press and Lava$^{TM}$ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and $1mm^2$ in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max$^{(R)}$ Ceram and LavaTM Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS. The mean microtensile bond strength of IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram ($43.40{\pm}5.51$ MPa) was significantly greater than that of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram ($31.71{\pm}7.03$ MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava$^{TM}$ Ceram, while the bond strength of bilayered IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram was significantly greater than tensile strength of monolithic IPS e.max$^{(R)}$ Ceram. CONCLUSION. Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials.

Purification and Characterizationn of Biosurfactant from Marine Pseudomonas sp. CHCS-2 (해양으로부터 분리한 Pseudomonas sp. CHCS-2가 생산하는 Biosurfactant의 정제 및 특성에 관한 연구)

  • 류병호;김학주
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.582-588
    • /
    • 1995
  • A marine microorganism producing biosurfactant was isolated from the oil polluted coast of Chung-Mu in Korea, and was identified as Pseudomonas sp.. It produced the biosurfactanl and its optimum culture conditions for pH and salt concentration were 8.0 and 3.0%, respectively. The productivity of biosurfactant from this strain was affected by the nitrogen source used. For the oil resolvability of the biosurfactant, the residual oil in the culture broth with 2% Kuwait crude oil at each time of 48, 96, and 132hr was investigated by gas chromatography. As result of this experiment, it was verified that the biosurfactant acted on C10-C14, of Kuwait crude oil and so the oil was decomposed. The biosurfactant isolated from the supernatant was purified by adsorption to Amberliter XAD-7 and followed by gel chromatography (Sephadex G-100) and HPLC. The purified biosurfactant showed a high value of emulsifying activity at $40^{\circ}C$ and the emulsifying stability was maintained at the temperature range of $30^{\circ}C$$60^{\circ}C$. The purified biosurfactant reduced the interfacial tension of Kuwait crude oil remarkably and showed improved dispersing ability compared to those of commercial surfactants such as Tween 80, Tween 60 and SDS.

  • PDF

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application (그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료)

  • Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.