DOI QR코드

DOI QR Code

Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals

  • Yu, Hye-Min (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Ah-Ram (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Moon, Jun-Hyuk (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lim, Jong-Sung (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Choi, Kyu-Yong (Department of Chemical and Biomolecular Engineering, University of Maryland)
  • Received : 2011.10.19
  • Accepted : 2011.05.09
  • Published : 2011.07.20

Abstract

Recently, the synthesis of ordered macroporous materials has received much attention due to its potential use as photonic band gap materials.$^1$ In this study, we have used the three-dimensional (3D) latex array template impregnated with benzenesulfonic acid (BSA), which is capable of catalyzing the reaction using tetraethyl orthosilicate (TEOS) as a precursor and distilled water. The polystyrene (PS) templates were reacted with TEOS in $scCO_2$ at 40 $^{\circ}C$ and at 80 bar. In the reactor, TEOS was filtrated into the PS particle lattice. After the reaction, porous silica materials were obtained by calcinations of the template. The stability test of the PS template in pure $CO_2$ was conducted before the main experiment. Scanning electron microscopy (SEM) images showed that the reaction in $scCO_2$ takes place only on the particle surface. This new method using $scCO_2$ has advantages over conventional sol-gel processes in its capability to control the fluid properties such as viscosity and interfacial tension. It has been found that the reaction in $scCO_2$ occurs only on the particle surface, making the proposed technique as more rapid and sustainable method of synthesizing inverse opal materials than conventional coating processes in the liquid phase and in the vapor phase.

Keywords

References

  1. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Adv. Mater. 2000, 12, 693. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  2. Moon, J. H.; Yang, S. M. Chem. Rev. 2010, 110, 547. https://doi.org/10.1021/cr900080v
  3. Piret, F.; Kwon, Y. U.; Su, B. L. Chem. Phys. Lett. 2009, 472, 207. https://doi.org/10.1016/j.cplett.2009.03.014
  4. Biswas, R.; Sigalas, M. M.; Subramania, G.; Soukoulis, C. M.; Ho, K. M. Phys. Rev. B 2000, 61, 4549. https://doi.org/10.1103/PhysRevB.61.4549
  5. Bratton, D.; Yang, D.; Dai, J. Y.; Christopher, K. Polym. Adv. Techol. 2006, 17, 94. https://doi.org/10.1002/pat.662
  6. Wang, X.; Xu, J. F.; Su, H. M.; Zeng, Z. H.; Chen, Y. L.; Wang, H. Z. Appl. Phys. Lett. 2003, 82, 2212. https://doi.org/10.1063/1.1565682
  7. Sanders, J. V. Nature 1964, 204, 1151. https://doi.org/10.1038/2041151a0
  8. Stein, A.; Schroden, R. Curr. Opin. Solid State Mat. Sci. 2001, 5, 553. https://doi.org/10.1016/S1359-0286(01)00022-5
  9. Lopez, C. Adv. Mater. 2003, 15, 1679. https://doi.org/10.1002/adma.200300386
  10. McHugh, M. A.; Krukonis, V. J. Supercritical Fluid Extraction: Principles and Practice; Butterworths: Boston, 1986.
  11. Bae, Y. C.; Gulari, E. J. Appl. Polym. Sci. 1997, 63, 459. https://doi.org/10.1002/(SICI)1097-4628(19970124)63:4<459::AID-APP7>3.0.CO;2-Q
  12. Moon, J. H.; Cho, Y. S.; Yang, S. M. Bull. Korean Chem. Soc. 2009, 30, 2245. https://doi.org/10.5012/bkcs.2009.30.10.2245
  13. Cabanas, A.; Enciso, E.; Carbajo, M. C.; Torralvo, M. J.; Pando, C.; Renuncio, J. A. R. Chem. Mat. 2005, 17, 6137. https://doi.org/10.1021/cm051382g
  14. Tomasko, D. L.; Li, H.; Liu, D.; Han, X.; Wingert, M. J.; Lee, J. L.; Koelling, K. W. Ind. Eng. Chem. Res. 2003, 42, 6431. https://doi.org/10.1021/ie030199z
  15. Condo, P. D.; Johnston, K. P. Macromolecules 1992, 25, 6119. https://doi.org/10.1021/ma00049a007
  16. Chiou, J. S.; Barlow, J. W.; Paul, D. R. J. Appl. Polym. Sci. 1985, 30, 2633. https://doi.org/10.1002/app.1985.070300626
  17. Cabanas, A.; Enciso, E.; Carbajo, M. C.; Torralvo, M. J.; Pando, C. Langmuir 2006, 22, 8966. https://doi.org/10.1021/la061539z
  18. Wissinger, R. G.; Paulatis, M. E. J. Polym. Sci., Pt. B-Polym. Phys. 1991, 29, 631. https://doi.org/10.1002/polb.1991.090290513
  19. Abramowitz, H.; Shah, P. S.; Green, P. F.; Johnston, K. P. Macromolecules 2004, 37, 7316. https://doi.org/10.1021/ma048961b
  20. Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A. Chem. Mat. 1999, 11, 795. https://doi.org/10.1021/cm980666g
  21. Carbajo, M. C.; Lopez, C.; Gomez, A.; Enciso, E.; Torralvo, M. J. J. Mater. Chem. 2003, 13, 2311. https://doi.org/10.1039/b304062c

Cited by

  1. Spherical Pseudo-Inverse Opal Silica with Pomegranate-Like Polymer Microparticles as Templates vol.297, pp.10, 2012, https://doi.org/10.1002/mame.201100438
  2. Fabrication of superhydrophobic surfaces using structured colloids vol.30, pp.5, 2013, https://doi.org/10.1007/s11814-013-0031-x
  3. 초임계 증착법을 통한 실리카와 타이타니아 역 오팔의 제조 vol.18, pp.1, 2011, https://doi.org/10.7464/ksct.2012.18.1.038