• Title/Summary/Keyword: interfacial reaction layer

Search Result 162, Processing Time 0.024 seconds

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

Cathode Microstructure Control and Performance Improvement for Low Temperature Solid Oxide Fuel Cells (저온 고체산화물 연료전지용 공기극 미세구조 제어 및 성능개선)

  • Kang, Jung-Koo;Kim, Jin-Soo;Yoon, Sung-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.727-732
    • /
    • 2007
  • In order to fabricate a highly performing cathode for low-temperature type solid oxide fuel cells working at below $700^{\circ}C$, electrode microstructure control and electrode polarization measurement were performed with an electronic conductor, $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and a mixed conductor, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$(LSCF). For both cathode materials, when $Sm_{0.2}Ce_{0.8}O_2$ (SDC) buffer layer was formed between the cathode and yttria-stabilized zirconia (YSZ) electrolyte, interfacial reaction products were effectively prevented at the high temperature of cathode sintering and the electrode polarization was also reduced. Moreover, cathode polarization was greatly reduced by applying the SDC sol-gel coating on the cathode pore surface, which can increase triple phase boundary from the electrolyte interface to the electrode surface. For the LSCF cathode with the SDC buffer layer and modified by the SDC sol-gel coating on the cathode pore surface, the cathode resistance was as low as 0.11 ${\Omega}{\cdot}cm^2$ measured at $700^{\circ}C$ in air atmosphere.

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

IS AN OXYGEN INHIBITION LAYER ESSENTIAL FOR THE INTERFACIAL BONDING BETWEEN RESIN COMPOSITE LAYERS? (Layering시 복합레진 층간의 계면 결합에서 oxygen inhibition layer가 필수적인가?)

  • Kim, Sun-Young;Cho, Byeong-Hoon;Baek, Seung-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.405-412
    • /
    • 2008
  • This study was aimed to investigate whether an oxygen inhibition layer (OIL) is essential for the interfacial bonding between resin composite layers or not. A composite (Z-250, 3M ESPE) was filled in two layers using two aluminum plate molds with a hole of 3.7 mm diameter. The surface of first layer of cured composite was prepared by one of five methods as followings, thereafter second layer of composite was filled and cured: Group 1 - OIL is allowed to remain on the surface of cured composite; Group 2 - OIL was removed by rubbing with acetone-soaked cotton; Group 3 - formation of the OIL was inhibited using a Mylar strip; Group 4 - OIL was covered with glycerin and light-cured; Group 5 (control) - composite was bulk-filled in a layer. The interfacial shear bond strength between two layers was tested and the fracture modes were observed. To investigate the propagation of polymerization reaction from active area having a photo-initiator to inactive area without the initiator, a flowable composite (Aelite Flow) or an adhesive resin (Adhesive of ScotchBond Multipurpose) was placed over an experimental composite (Exp_Com) which does not include a photoinitiator and light-cured. After sectioning the specimen, the cured thickness of the Exp_Com was measured. The bond strength of group 2, 3 and 4 did not show statistically significant difference with group 1. Groups 3 and 4 were not statistically significant different with control group 5. The cured thicknesses of Exp_Com under the flowable resin and adhesive resin were 20.95 (0.90) urn and 42.13 (2.09), respectively.

Flexural strength properties of MoSi2 based composites (MoSi2 복합재료의 굽힘강도 특성)

  • Lee, Sang-Pill;Lee, Hyun-Uk;Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.66-71
    • /
    • 2011
  • The flexural strength of $MoSi_2$ based composites reinforced with Nb sheets has been investigated, based on the detailed examination of their microstructure and fractured surface. Both sintered density and porosity of Nb/$MoSi_2$ composites were also examined. Nb/$MoSi_2$ composites were fabricated by different conditions such as temperature, applied pressure and its holding time, using a hot-press device. The volume fraction of Nb sheet in this composite system was fixed as 10%. The characterization of Nb/$MoSi_2$ composites were investigated by means of optical microscopy, scanning electron microscope and three point bending test. Nb/$MoSi_2$ composites represented a dense morphology at the interfacial region, accompanying the creation of two types of reaction layer by the chemical reaction of Nb and $MoSi_2$. Nb/$MoSi_2$ composites possessed an excellent density at the fabricating temperature of $1350^{\circ}C$, corresponded to about 95% of theoretical density. The flexural strength of Nb/$MoSi_2$ romposites were greatly affected by the pressure holding time at the same fabricating temperature, owing to the large suppression of porosity in the microstructure. Especially, Nb/$MoSi_2$ composites represented a good flexural strength of about 310 MPa at the fabricating condition of $1350^{\circ}C$, 30MPa and 60min, accompanying the pseudo-ductile fracture behavior by the deformation of Nb sheet and the interfacial delamination.

Combustion of Al-Ni Precursor Al3Ni Foam Manufacture of Composite Structure with Hollow Pipe and Filling of Foam and Investigation of Pore Condition (Al-Ni 전구체의 연소합성 발포에 의한 Al3Ni 폼과 할로우 파이프의 복합구조체 제작 및 폼의 충진성과 기공상태 조사)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.617-622
    • /
    • 2019
  • In order to develop a process for manufacturing a composite structure of an intermetallic compound foam and a hollow material, the firing and pore form of the Al-Ni precursor in a steel pipe are investigated. When the Al-Ni precursor is foamed in a hollow pipe, if the temperature distribution inside the precursor is uneven, the pore shape distribution becomes uneven. In free foaming, no anisotropy is observed in the foaming direction and the pore shape is isotropic. However, in the hollow pipe, the pipe expands in the pipe axis direction and fills the pipe. The interfacial adhesion between $Al_3Ni$ foam and steel pipe is excellent, and interfacial pore and reaction layer are not observed by SEM. In free foaming, the porosity is 90 %, but it decreases to about 80 % in the foam in the pipe. In the pipe foaming, most of the pore shape appears elongated in the pipe direction in the vicinity of the pipe, and this tendency is more remarkable when the inside pipe diameter is small. It can be seen that the pore size of the foam sample in the pipe is larger than that of free foam, because coarse pores remain after solidification of the foam because the shape of the foam is supported by the pipe. The vertical/horizontal length ratio expands along the pipe axis direction by foaming in the pipe, and therefore circularity is reduced.

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF

Effects of growth interruption on the photoluminescence characteristics of InGaAs/InP quantum wells (성장정지효과에 의한 InGaAs/InP 양자우물구조의 Photoluminescence 특성 변화)

  • 문영부;이태완;김대연;윤의준;유지범
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.104-111
    • /
    • 1998
  • The InGaAs/InP quantum wells(QWs) were grown by low pressure metalorganic chemical vapor deposition and the effects of growth interruption steps on their interfacial structures were investigated by measuring photoluminescence spectra. When InP or InGaAs surface was treated under the same group V ambient, the full width at half maximum (FWHM) of the QW peak increased possibly due to the incorporation of impurities during the growth interruption time. When InP surface was treated under $AsH_3$, howerer, the PL peak showed red-shift due to the As-P exchange reaction and the change of FWHM was not remarkable. The effective thickness of InAs interfacial layer formed during $AsH_3$, treatment on the InP surface was calculated to be 1~2 monolayers. In the case of InGaAs treatment under $PH_3$, the PL peak energy and the FWHM increasied. This results suggest that $PH_3$ treatment on the InGaAs surface suppresses the incorporation of As into the subsequent InP layer and the local replacement of As by P occurs simultaneously.

  • PDF

Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode (BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성)

  • Jeong, Jaewon;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

Studies on the Interfacial Reaction of Screen-Printed Sn-37Pb, Sn-3.5Ag and Sn-3.8Ag-0.7Cu Solder Bumps on Ni/Au and OSP finished PCB (Ni/Au 및 OSP로 Finish 처리한 PCB 위에 스크린 프린트 방법으로 형성한 Sn-37Pb, Sn-3.5Ag 및 Sn-3.8Ag-0.7Cu 솔더 범프 계면 반응에 관한 연구)

  • Nah, Hae-Woong;Son, Ho-Young;Paik, Kyung-Wook;Kim, Won-Hoe;Hur, Ki-Rok
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.750-760
    • /
    • 2002
  • In this study, three solders, Sn-37Pb, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu were screen printed on both electroless Ni/Au and OSP metal finished micro-via PCBs (Printed Circuit Boards). The interfacial reaction between PCB metal pad finish materials and solder materials, and its effects on the solder bump joint mechanical reliability were investigated. The lead free solders formed a large amount of intermetallic compounds (IMC) than Sn-37Pb on both electroless Ni/Au and OSP (Organic Solderabilty Preservatives) finished PCBs during solder reflows because of the higher Sn content and higher reflow temperature. For OSP finish, scallop-like $Cu_{6}$ /$Sn_{5}$ and planar $Cu_3$Sn intermetallic compounds (IMC) were formed, and fracture occurred 100% within the solder regardless of reflow numbers and solder materials. Bump shear strength of lead free solders showed higher value than that of Sn-37Pb solder, because lead free solders are usually harder than eutectic Sn-37Pb solder. For Ni/Au finish, polygonal shaped $Ni_3$$Sn_4$ IMC and P-rich Ni layer were formed, and a brittle fracture at the Ni-Sn IMC layer or the interface between Ni-Sn intermetallic and P-rich Ni layer was observed after several reflows. Therefore, bump shear strength values of the Ni/Au finish are relatively lower than those of OSP finish. Especially, spalled IMCs at Sn-3.5Ag interface was observed after several reflow times. And, for the Sn-3.8Ag-0.7Cu solder case, the ternary Sn-Ni-Cu IMCs were observed. As a result, it was found that OSP finished PCB was a better choice for solders on PCB in terms of flip chip mechanical reliability.