• Title/Summary/Keyword: interfacial property

Search Result 234, Processing Time 0.02 seconds

Effect of Alkali Treatment Method and Concentration of Rice Straw on the Flexural Properties and Impact Strength of Rice Straw/Recycled Polyethylene Composites (볏짚/재활용폴리에틸렌 복합재료의 굴곡특성 및 충격강도에 미치는 볏짚의 알칼리처리 방법 및 농도의 영향)

  • Lee, Ki Young;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.87-95
    • /
    • 2019
  • In the present study, the effect of alkali treatment of rice straw on the flexural properties and impact strength of rice straw/recycled polyethylene composite was investigated. Alkali treatments were performed by means of two different methods at various sodium hydroxide (NaOH) concentrations. One is static soaking method and the other is dynamic shaking method. The composites were made by compression molding technique using rice straw/recycled polyethylene pellets produced by twin-screw extrusion process. The result strongly depends on the alkali treatment method and concentration. The shaking method done with a low concentration of 1 wt% NaOH exhibits the highest flexural and impact properties whereas the soaking method done with a high concentration of 10 wt% NaOH exhibits the highest properties, being supported qualitatively by the fiber-matrix interfacial bonding of the composites. The properties between the two highest property cases above-described are comparable each other. The study suggests that such a low concentration of 1 wt% NaOH may be used for alkali treatment of natural fibers to improve the flexural and impact properties of resulting composites, rather than using high concentrations of NaOH, 10 wt% or higher. Considering of environmental concerns of alkali treatment, the shaking method is preferable to use.

Synthesis of Silane Group Modified Polyurethane Acrylate and Analysis of Its UV-curing Property (실란기가 도입된 폴리우레탄 아크릴레이트 합성 및 자외선 경화 특성 분석)

  • Kim, Jung Soo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • In this study, we prepared a silver nanoparticle transferable adhesive composition with transparency and adhesive properties using UV-curable urethane acrylate containing silane groups. The urethane-based adhesive composition was applied between the Ag/PET film in which silver nanoparticles were patterned on PET and the PC film to be transferred. Immediately after UV-curing with UV, PET was removed to complete the manufacture of Ag/PC film. UV-curable urethane acrylate containing silane groups was synthesized using polycaprolactone diol (PCL), isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), and (3-aminopropyl) triethoxysilane (APTES). The silane group of APTES can improve interfacial adhesion by reacting with the specially treated silver nanoparticle surface of the Ag/PET film. In addition, we improved the adhesion between silver nanoparticle and PC film by mixing UV-curable urethane acrylate containing a silane group and a functional acrylic diluent used as a diluent. We analyzed the synthesis process of urethane acrylate using FT-IR, and compared the adhesive properties, optical properties, and transfer properties according to the molar ratio of APTES and the acrylic diluent composition. As a result, the best transfer properties were confirmed in the adhesive composition prepared under the conditions of PUA2S1_0.5.

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

Preparation and physical properties of flame retardant high density polyethylene utilizing inorganic waste shell powder (재활용(再活用) 굴 껍질 분말(粉末)을 이용(利用)한 고밀도 폴리에틸렌계 난연 소재(素材)의 제조(製造)와 물성(物性))

  • Choi, Jae-Won;Cho, Tae-Keun;Ahn, Jun-Hyung;Lee, Sung-Ho;Chung, Yong-Chan;Jeon, Ho-Seok;Chun, Byoung-Chul
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.21-29
    • /
    • 2008
  • Waste shell powder was added to the high density polyethylene(HDPE), and resultant mechanical properties and flame retardancy were analyzed in terms of shell content. Compatibilizer(PE-g-MA) was used to enhance the mechanical properties of the prepared HDPE/shell composites, and several flame retardant agents($Al_2O_3$, $Sb_2O_3$) were utilized to improve flame retardancy. Addition of the compatibilizer resulted in an improved mechanical properties due to the increased interfacial bonding between HDPE matrix and shell powder. In the case of impact strength, it even reached to the impact strength of pure HDPE. Also the addition of the flame retardant agents did not exhibit mechanical property decrease. UL-94 flammability test on the prepared HDPE/shell composites indicated that at 40wt% of shell only inclusion, time to ignite the flame and the total time of flame duration increased. When flame retardant agents mixed with shell powder were added to the HDPE matrix, improved flame retardancy was observed. Generally, flame retardancy effect of $Al_2O_3$ was better than $Sb_2O_3$. UL-94 V-0 classification was observed for the specimens with $Al_2O_3$ and compatibilizer at more than 40wt% shell, and also for specimens with $Sb_2O_3$ and compatibilizer at all shell content.