• Title/Summary/Keyword: interfacial pressure

Search Result 234, Processing Time 0.025 seconds

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

Effects of Plasma Treatment on Mechanical Properties of Jute Fibers and Their Composites with Polypropylene (황마섬유 및 황마-폴리프로필렌 복합체의 특성에 미치는 플라즈마 처리영향)

  • Huh, Yang Il;Bismark, Mensah;Kim, Sungjin;Lee, Hong Ki;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.310-317
    • /
    • 2012
  • A jute fiber surface was modified with argon gas in a cylinder type RF plasma generator to enhance the interfacial bond strength and to optimize the plasma treatment condition. The plasma power, gas pressure, and treat time were varied to figure out any effect of those parameters on the morphology and mechanical strength of jute fibers, and the interfacial bond strength for a model composite with polypropylene resin. As the severity of plasma treatment was increased, the surface of jute fibers became rougher. Gas pressure was less effective in roughening of the surface compared with those of treat time and plasma power. Approximately 25% drop in tensile strength of jute fibers was observed for the parameters of treat time and plasma power, while little deterioration was found for gas pressure, with increasing the severity. Based on the interfacial shear strength (IFSS), the optimum plasma treatment condition was determined to be treat time of 30 s, plasma power of 40 W, and gas pressure of 30 mTorr.

Breakdown characteristics of EPDM/XLPE laminate (XLPE /EPDM laminate의 절연파괴 특성)

  • Nam, Jin-Ho;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1596-1598
    • /
    • 1999
  • In order to determine what influences the interfacial breakdown between two internal dielectric surfaces. We studied the interfacial breakdown phenomena at several interfacial conditions. With the increase of interfacial pressure, at first breakdown strength in interfaces was increased, and then saturated. Breakdown strength in interface pasted with silicone oil was higher than that with silicone grease. As a function of heat treatment time in a vacuum oven interfacial breakdown strength was increased much in XLPE/EPDM laminates pasted with silicone grease but increased a little in that with silicone oil. As an increase of curing agent in silicone oil and grease, breakdown strength in interfaces was increased and then saturated.

  • PDF

Interfacial Friction Factor in Arrested Saline Wedge (정상염수(定常塩水)쐐기에 있어서의 계면저항계수(界面低抗係數)의 평가(評價))

  • Lee, Moon Ock;Murota, Akira
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.53-62
    • /
    • 1989
  • In order to determine the form and the length of saline wedge, it is necessary to evaluate interfacial friction factor. Hetherto one dimensional two-layer flow model which assumed pressure as the hydrostatic pressure distribution has been well used to the calculation of saline wedge form, it just then stands in need of relevant interfacial friction factor. For example, in the case where we calculate back to interfacial friction factor out of saline wedge form obtained at a laboratory open channel with comparatively narrow width, it is needed to correct the side-wall effect of a channel, if generally negligible in the river. In this study, we confirmed the influence of a side-wall upon the lateral velocity distributions at laboratory channel and then examined in detail the value of interfacial friction factor in the case where it was corrected by the side-wall effect and not corrected. And then we make clear the influence of a side-wall upon the arrested saline wedge and interfacial faction factor from these results.

  • PDF

A Study on the Fatigue Crack Propagation Behavior of $Al_2O_3/AC4C$ Composites Made by Squeeze Casting Process (용탕단조법으로 제조된 $Al_2O_3/AC4C$ 복합재료의 피로균열 전파거동에 관한 연구)

  • Yeo, In-Dong;Lee, Chi-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.388-396
    • /
    • 1995
  • This study has been conducted with the purpose of examining the fatigue crack growth characteristics of $Al_2O_3$ short fiber reinforced aluminum matrix composites made by squeeze casting process with different applied pressure and binder amount. Fatigue crack growth experiments have been performed under constant load amplitude method with a fixed load ratio. The rate of crack propagation was decreased with binder amount as well as applied pressure. Also fatigue crack growth path in matrix was changed from flat to rough mode with an increase of applied pressure. In the composites, fatigue crack was propagated to interface between matrix and reinforcement at 10MPa, but it was propagated to reinforcement at 20MPa. The major reason of thee result was considered that interfacial bonding force and microstructure of matrix were improved due to an increase of applied pressure. Localized ductile striation in the composites was observed at low growth rate region and such a phenominon was remarkable with an increase of applied pressure. At high growth rate region, the propensity of fracture appearance was changed from interfacial debonding to reinforcement fracture with an increase of applied pressure.

  • PDF

Clad강의 debonding 현상에 대한 연구 2

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.22-27
    • /
    • 1987
  • The debonding of clad steel was often occurred at interface between stainless steel and carbon steel during the fabrication of pressure vessel. In order to clarify the causes of debonding phenomena, the fabrication sequences were fully analyzed. As a result, possible factors were noticed for causing the debonding of clad steel, that is, thermal treatment on weldment and welding. Moreover the existence of hydrogen diffused from surroundings also expedites the debonding of clad steel. In this stud, the effect of welding thermal cycle, hydrogen and mixed condition under thermal treatment on the interfacial strength of clad steel were investigated to understand the debonding mechanism of clad steel. From this study, it has been confirmed that the interfacial strength of clad steel was remarkablely deteriorated due to welding and/or existence of hydrogen under thermal treatment. In the case of welding thermal cycle effect, the higher temperature at interface experienced by welding, the more reduction in interfacial strength of clad steel resulted in. And the existence of diffusible hydrogen also reduced the interfacial strength. It is also found that the interfacial strength of clad steel became much lower value than that of the as-received plate under coexistence of above mentioned factors.

  • PDF

A study on the analysis and simulation of interfacial breakdown properties with interfacial condition in Epoxy/EPDM (Epoxy/EPDM 이종절연물의 계면조건에 따른 계면절연파괴특성의 분석 및 시뮬레이션에 관한 연구)

  • 정인재;박성민;김영식;김상걸;장인범;김용주;이준응
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.227-230
    • /
    • 1998
  • The interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joint. In order to better understand this phenomenon, breakdown experiments were performed for each interfacial condition at Epoxt/EPDM interface found in cable. The specimen were Epoxy resin and EPDM generally used in cable joint. The interface conditions were three parts. First condition was the pressure of interface, we used the value of 1, 2, 3, 4, 5[kg/cm$^2$]. For the second condition, the sanding condition was treated with sand paper #220, #600, #1200. Finally, we observed the breakdown according to the presence of silicon oil at the interface.

  • PDF

A Characteristic of Fe-Cu Interfacial Reaction in the Hydraulic Cylinder Block for Vehicle Parts (수송기기 유압 실린더 블록 재료의 Fe-Cu 계면반응 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.90-94
    • /
    • 2004
  • Generally, a hydraulic cylinder block which is one of a vehicle parts that plays Important role in excavator power transmission, has copper alloy separation phenomenon by sliding motion between metals in high pressure condition. In this paper, to solve this problem, the interfacial reaction layer of Fe-Cu With SCM440 and copper alloy is studied through the melting method. As the result of this study, it is found that the interfacial reaction layer of $1{\mu}m$ created in the interface of Fe-Cu which has very strong physical bonding. It has been also confirmed that the melting method can improve life of the hydraulic cylinder block.

  • PDF