• Title/Summary/Keyword: interfacial energy

Search Result 625, Processing Time 0.026 seconds

Filler-Elastomer Interactions 5. Effect of Silane Surface Treatment on Interfacial Adhesion of Silica/Rubber Composites (충전재-탄성체 상호작용 5. 실란 표면처리가 실리카/고무 복합재료의 계면 특성에 미치는 영향)

  • 박수진;조기숙
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.445-451
    • /
    • 2002
  • In this work, the adsorption characteristics and mechanical interfacial properties of treated silicas by silane coupling agents, such as, ${\gamma}$-methacryloxy propyl trimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), and ${\gamma}$-mercapto propyl trimethoxy silane (MCPS), were investigated. The equilibrium spreading pressure ($pi_e$), surface free energy ($gamma_s$ s/), and specific surface area ($S_{BET}$) were studied by the BET method with $N_2$/77 K adsorption. The developments of nonpolar functional groups of the silica surfaces treated by silane coupling agents led to the increase in the $S_{BET}$, $pi_e$, and $gamma_s$, resulting in the improved tearing energy ($G_{mc}$)of the silica/rubber composites. The composites treated by MPS showed the superior mechanical interfacial properties in these systems. These results explained by changing of crystalline size, dispersion, agglomerate, and surface functional group of silica/rubber composites.

Effect of Post-Annealing Conditions on Interfacial Adhesion Energy of Cu-Cu Bonding for 3-D IC Integration (3차원 소자 집적을 위한 Cu-Cu 접합의 계면접착에너지에 미치는 후속 열처리의 영향)

  • Jang, Eun-Jung;Pfeiffer, Sarah;Kim, Bi-Oh;Mtthias, Thorsten;Hyun, Seung-Min;Lee, Hak-Joo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.204-210
    • /
    • 2008
  • $1.5\;{\mu}m$-thick copper films deposited on silicon wafers were successfully bonded at $415^{\circ}C$/25 kN for 40 minutes in a thermo-compression bonding method that did not involve a pre-cleaning or pre-annealing process. The original copper bonding interface disappeared and showed a homogeneous microstructure with few voids at the original bonding interface. Quantitative interfacial adhesion energies were greater than $10.4\;J/m^2$ as measured via a four-point bending test. Post-bonding annealing at a temperature that was less than $300^{\circ}C$ had only a slight effect on the bonding energy, whereas an oxygen environment significantly deteriorated the bonding energy over $400^{\circ}C$. This was most likely due to the fast growth of brittle interfacial oxides. Therefore, the annealing environment and temperature conditions greatly affect the interfacial bonding energy and reliability in Cu-Cu bonded wafer stacks.

Interface Fracture and Crack Propagation in Concrete : Fracture Criteria and Numerical Simulation (콘크리트의 계면 파괴와 균열 전파 : 파괴규준과 수치모의)

  • 이광명
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.235-243
    • /
    • 1996
  • The mechanical behavior ot concrete is strongly influenced by various scenarios of crack initiation and crack propagation. Recently. the study of the interface fracture and cracking in interfacial regions is emerged as an important field, in the context of the developement of high performance concrete composites. The crack path criterion for elastically homogeneous materials is not valid when the crack advances at an interface because. in this case, the consideration of the relative magnitudes of the fracture toughnesses between the constituent materials and the interface are involved. In this paper, a numerical method is presented to obtain the values of two interfacial fracture parameters such as the energy release rate and the phase angle at the tip of an existing interface crack. Criteria based on energy release rate concepts are suggested for the prediction of crack growth at the interfaces and an hybrid experimental-numerical study is presented on the two-phase beam composite models containing interface cracks to investigate the cracking scenarios in interfacial regions. In general, good agreement between the experimental results and the prediction from the criteria is obtained.

Effect of Surface Treatment of Polycarbonate Film on the Adhesion Characteristic of Deposited SiOx Barrier Layer (폴리카보네이트 필름 표면 처리가 증착 SiOx 베리어층 접착에 미치는 영향)

  • Kim, Gwan Hoon;Hwang, Hee Nam;Kim, Yang Kook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.373-378
    • /
    • 2013
  • The interfacial adhesion strength is very important in $SiO_x$ deposited PC film for the barrier enhanced polycarbonate (PC) flexible substrate. In this study, PC films were treated by undercoating, UV/$O_3$ and low temperature plasma and then the effect of physical and chemical surface modifications on the interfacial adhesion strength between PC film and $SiO_x$ barrier layer were studied. It was found that untreated PC film shows significantly low interfacial adhesion strength due to the smooth surface and low surface free energy of PC. Low temperature plasma treatments resulted in the increase of both surface roughness and surface free energy due to etching and the appearance of polar molecules on the PC surface. However, UV/$O_3$ treatment only shows the increase of surface free energy by developed polar molecules on the surface. These surface modifications caused the enhancement of surface interfacial strength between PC film and $SiO_x$ barrier. In the case of undercoating, it was found that the increase of surface interfacial strength was achieved by adhesion between various acrylic acid on acrylate coated surface and $SiO_x$ without increase of polar surface energy. In addition, the barrier property is also improved by organic-inorganic hybrid multilayer structure.

Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites

  • Lee, Hyun-Seok;Cho, Dong-Hwan;Han, Seong-Ok
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.411-417
    • /
    • 2008
  • The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP bio-composites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.

Effect of Electron Beam Irradiation on the Interfacial and Thermal Properties of Henequen/Phenolic Biocomposites

  • Pang, Yansong;Yoon, Sung Bong;Seo, Jeong Min;Han, Seong Ok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.12-17
    • /
    • 2005
  • Natural fiber/phenolic biocomposites with chopped henequen fibers treated at various levels of electron beam irradiation (EBI) were made by means of a matched-die compression molding method. The interfacial property was explored in terms of interfacial shear strength measured by a single fiber microbonding test. The thermal properties were studied in terms of storage modulus, tan ${\delta}$, thermal expansion and thermal stability measured by dynamic mechanical analysis, thermomechanical analysis and thermogravimetric analysis, respectively. The result showed that the interfacial and thermal properties depend on the treatment level of EBI done to the henequen fiber surfaces. The present result also demonstrates that 10 kGy EBI is most preferable to physically modify the henequen fiber surfaces and then to improve the interfacial property of the biocomposite, supporting earlier results studied with henequen/poly (butylene succinate) and henequen/unsaturated polyester biocomposites.

  • PDF

Emulsification of Chloroprene Rubber (CR) by Interfacial Chemistry; Stabilization and Enhancement of Mechanical Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, CR (Chloroprene Rubber) was emulsified by phase-inversion emulsification with nonionic surfactants (NP-1025, LE-1017, and OP-1019) and an anionic surfactant (SDBS; sodium dodecylbenzenesulfonate), and its stabilization was investigated through a study of its adsorption characteristics, zeta potential, and flow behavior. As the amount of the mixed surfactant increased, the droplet size decreased, resulting in the increase of viscosity. In particular, a CR emulsion with a lower absorbance in the UV spectrum exhibited the highest zeta potential. The results of this experiment showed that the CR emulsion prepared using (LE-1017) and SDBS was the most stable. In this study, calcium hydroxide and aluminum hydroxide were added to enhance the mechanical properties of the CR emulsion, and the relationship between tensile strength, tear strength and surface free energy were investigated. The tensile and tear strengths of the CR emulsion incresed as the amount of calcium hydroxide and aluminum hydroxide increased. The highest tensile and tear strengths and surface free energy were observed for additions of 1.0% calcium hydroxide and 0.80% aluminum hydroxide, respectively. It was concluded that the interfacial bonding strength was improved by the even dispersion of calcium hydroxide and aluminum hydroxide in the CR emulsion.

Effect of Annealing Treatment Conditions on the Interfacial Adhesion Energy of Electroless-plated Ni on Polyimide (고온열처리 조건이 무전해 니켈 도금막과 폴리이미드 사이의 계면접착력에 미치는 영향)

  • Park, Sung-Cheol;Min, Kyoung-Jin;Lee, Kyu-Hwan;Jeong, Yong-Soo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.486-491
    • /
    • 2008
  • The effect of annealing treatment conditions on the interfacial adhesion energy between electrolessplated Ni film and polyimide substrate was evaluated using a $180^{\circ}$ peel test. Measured peel strength values are $26.9{\pm}0.8,\;22.4{\pm}0.8,\;21.9{\pm}1.5,\;23.1{\pm}1.3,\;16.1{\pm}2.0\;and\;14.3{\pm}1.3g/mm$ for annealing treatment times during 0, 1, 3, 5, 10, and 20 hours, respectively, at $200^{\circ}C$ in ambient environment. XPS and AES analysis results on peeled surfaces clearly reveal that the peeling occurs cohesively inside polyimide. This implies a degradation of polyimide structure due to oxygen diffusion through interface between Ni and polyimide, which is also closely related to the decrease in the interfacial adhesion energy due to thermal treatment in ambient conditions.

A Study on the Nonlinear Viscoelastic Properties of PBXs (복합화약의 비선형 점탄성 특성 연구)

  • Shim Jung-Seob;Kim Hyoun-Soo;Lee Keun-Deuk;Kim Jeong-Kook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.100-108
    • /
    • 2004
  • Nitramine-polymer composites suffer from a problem known as dewetting. Dewetting adversely affects the performance and the sensitivity characteristics of an explosive composition. Voids, which are generated between explosive particles and binder on dewetting, act as initiation sites. For a PBXs as well as propellants, where good adhesion and mechanical properties are of great importance, dewetting therefore must be prevented by strong adhesion between the filler and the binder. The surface energy of materials is measured by Wilhelmy plate and wicking method. The interfacial energy between the filler and the binder is calculated from the disperse phase and the polar phase of surface energy. Time dependent compressive properties of composite explosives have been determined by stress-strain curves obtained at different strain rates and temperatures. The interfacial state of the PBX was observed through SEM. It was found from the result that the interface between the explosive and the binder becomes better adhesion with decreasing interfacial tension and increasing work of adhesion. The result clearly shows that the castable PBX has good adhesion more than the pressable PBX.

Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite

  • Kumar, Akshay;Pandel, U.;Banerjee, M.K.
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.245-255
    • /
    • 2017
  • High energy ball milling is employed to produce iron matrix- multiwall carbon nanotube (MWCNT) reinforced composite. The damage caused to MWCNT due to harsh ball milling condition and its influence on interfacial bonding is studied. Different amount of MWCNT is used to find the optimal percentage of MWCNT for avoidance of the formation of chemical reaction product at the matrix - reinforcement interface. Effect of process control agent is assessed by the use of different materials for the purpose. It is observed that ethanol as a process control agent (PCA) causes degradation of MWCNT reinforcements after milling for two hours whereas solid stearic acid used as process control agent, allows satisfactory conservation of MWCNT structure. It is further noted that at a high MWCNT content (~ 2wt.%), high energy ball milling leads to reaction of iron and carbon and forms iron carbide (cementite) at the iron-MWCNT interface. At low percentage of MWCNT, dissolution of carbon in iron takes place and the amount of reinforcement in iron matrix composite becomes negligibly small. However, under the present ball milling condition (ball to metal ratio~ 6:1 and 200 rpm vial speed) iron-1wt.% MWCNT composite of good interfacial bonding can retain the tubular structure of reinforcing MWCNT.