• Title/Summary/Keyword: interfacial energy

Search Result 628, Processing Time 0.025 seconds

Recovery of Covalently Linked Fatty Acid Monolayer on the Hair Surface Using Biomimetic Lipid (생체모사 지질을 이용한 모발 표면에 공유 결합된 지방산 단분자층의 회복)

  • Kim, Ei-Suk;Son, Seong-Kil;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.2
    • /
    • pp.139-145
    • /
    • 2012
  • There is a unique type of fatty acid in the hair surface. 18-methyleicosanoic acid (18-MEA) is an unusual anteiso fatty acid covalently linked to the outermost surface of hair cuticle. A layer of 18-MEA is located in the upper ${\beta}$-layer of the CMC that is responsible for the low surface energy and low friction resistance of the hair's outer surface. The high mobility of 18-MEA molecule facilitates spreading of extraneous lipid by decreasing interfacial shear strength. In this study, we introduced N-hydroxyl succinimidyl ester functional group to the one end of C10 - 40 isoalkyl acid for regenerating hair surface with covalently bound fatty acid layer. The re-hydrophobicization of hair surface has been investigated by contact angle measurement. The inner moisture content of hair at different levels of humidity (40, 55, 70 %RH) was measured by electric moisture analyzer. Treatment with Hydroxysuccinimidyl C10 - 40 Isoalkyl Acidate (HCIA) was supposed to make hair surface smoother by filling the cracks between cuticles with covalently bound fatty acid monomolecular layer like cuticle glue. This glue effect was also confirmed with line profile of AFM images. Therefore, the moisture and structural components of inner hair were not easily flown out and the optimum moisture content could be kept constantly though the outside humidity level was changed. The lateral force microscopy (LFM) by using atomic force microscope showed that the friction force of hair surface treated with HCIA was decreased. It also showed the constantly sustained friction value even after shampooing repeated 15 times.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Mechanical Properties of Strain-Hardening Cement Composites(SHCCs) according to the Water-Cement Ratio (물시멘트비에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Kim, Yun-Su;Jang, Yong-Heon;Jang, Gwang-Su;Jeon, Esther;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.465-468
    • /
    • 2008
  • SHCCs (Strain Hardening Cement Composites) show the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCCs, it is needed to investigate the compression, four-point bending, direct tensile response of SHCCs with different types of fibers and water-cement ratio. For these purposes, three kinds of fibers were used: PP(polypropylene, 2.0%), PVA(Polyvinyl alcohol, 2.0%), PE (Polyethylene, 1.0%). Also, effects of water-cement ratio(0.45, 0.60) on the SHCCs were evaluated in this paper. As the result of test, SHCCs with PVA and PE fiber were showed better overall behavior than specimens with PP fibers on bending and direct tensile test. Also, for the same type of fiber, SHCCs with water-cement ratio of 0.45 exhibited higher ultimate strength than specimen with water-cement ratio of 0.60 on compression strength, and showed the multiple cracking on bending and direct tensile test. Therefore, to improve of workability and dispersibility of SHCCs on water-cement ratio of 0.60, continual studies were needed.

  • PDF

Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma (수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거)

  • Jo, Jin Oh;Lee, Sang Baek;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.544-550
    • /
    • 2013
  • This work investigated the environmental application of an underwater dielectric barrier discharge plasma reactor consisting of a porous hydrophobic ceramic tube to the decolorization of an azo dyeing wastewater. The reactive species generated by the plasma are mostly short-lived, which also need to be transferred to the wastewater right after the formation. Moreover, the gas-liquid interfacial area should be as large as possible to increase the decolorization rate. The arrangement of the present wastewater treatment system capable of immediately dispersing the plasmatic gas as tiny bubbles makes it possible to effectively decolorize the dyeing wastewater alongside consuming less amount of electrical energy. The effect of discharge power, gas flow rate, dissolved anion and initial dye concentration on the decolorization was examined with dry air for the creation of plasma and amaranth as an azo dye. At a gas flow rate of $1.5Lmin^{-1}$, the good contact between the plasmatic gas and the wastewater was achieved, resulting in rapid decolorization. For an initial dye concentration of $40.2{\mu}molL^{-1}$ (volume : 0.8 L; discharge power : 3.37 W), it took about 25 min to attain a decolorization efficiency of above 99%. Besides, the decolorization rate increased with decreasing the initial dye concentration or increasing the discharge power. The presence of chlorine anion appeared to slightly enhance the decolorization rate, whereas the effect of dissolved nitrate anion was negligible.

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • Seo, So-Hyeon;Lee, Jeong-Hyeon;Bang, Gyeong-Suk;Lee, Hyo-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF

Two Layer Modelling with Applications to Exchange Flow and Internal Tide (이층류 모델링의 교환류와 내부조석파 연구에의 적용)

  • Kang, Sok-Kuh;Abbott, Michael-B.;Heung, Jae-Lie;Yum, Ki-Dai
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.9-23
    • /
    • 1997
  • A numerical study of a two-layer, stratified flow is investigated, using the implicit finite difference method in one dimension. The results of computational method have been tested and, in case of lock exchange flow, compared with the results of experimental data. The results of model experiments with various interfacial, bottom friction coefficients along with various time weighting factor of numerical scheme and dissipative interface are shown and discussed. Two-layer model experiment has been also carried out to investigate the generation and propagation characteristics of internal tidal wave over the steep bottom topography under stratified condition. The internal wave seems to well radiate through the downstream boundary under the experiments adopting radiation conditions both at two layers and only at upper layer, confirming the applicability of radiational boundary condition in stratified flows. It is also shown that the internal wave through the downstream boundary propagates more actively with increasing thickness of lower layer in the downstream. This implies that the potential tidal energy in the interface will depend upon the thickness of lower layer for the constant thickness of upper layer.

  • PDF

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

A Study on the Manufacturing and Mechanical Properties of the PA66/EPDM/PP Composites for Enhanced Low Temperature Fracture Resistances (저온 내충격성 향상을 위한 PA66/EPDM/PP 복합체 제조와 기계적 특성 연구)

  • Lee, Tae-Sik;Yoon, Chang-Rok;Bang, Dae-Suk;Ahn, Dae-Young;Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.164-174
    • /
    • 2009
  • PA66/EPDM/PP-g-MA and PA66/EPDM-g-MA/PP-g-MA composites were manufactured by a modular intermeshing twin screw extruder for enhanced low temperature impact resistance with different content of PP-g-MA. The results showed that composite containing 90 wt% of PA66, 8 wt% of EPDM-g-MA, and 2 wt% of PP-g-MA has a optimum value in the thermal and mechanical properties. The characteristics of the composites were analyzed by TGA, DSC, and SEM. From above results, we established that the low interfacial strength and the impact resistance at low temperature shown in a pre-existing PP/EPDM composite were enhanced by grafting with compatibilizer such as maleic anhydride. These results show the possibility of local manufacturing process and cost down with optimum screw configuration for best mixing quality in the twin screw extruder.

Electrochemical Characteristics of Microporous Polymer Electrolytes Based on Poly(vinylidene-co-hexafluoropropylene) (PVdF계 미세기공 고분자 전해질의 전기화학적 특성)

  • Jung Kang-Kook;Kim Jong-Uk;Ahn Jou-Hyeon;Kim Ki-Won;Ahn Hyo-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.183-188
    • /
    • 2004
  • In order to develop polymer electrolyte for lithium/sulfur batteries, highly microporous P(VdF-HFP) membranes were prepared by phase inversion method. Porous structure was controlled by extracting NMP with mixture of deionized water and methanol. Porous structure of the membranes was observed with SEM. Polymer electrolytes were prepared by soaking the porous membranes in 1M $LiCF_3SO_3-TEGDME/EC$. The ionic conductivity of polymer electrolyte was found to be at high as $2\times10^{-3}S/cm$ when the polymer membrane extracted by $80\%$ methanol was used. The microporous polymer electrolyte optimized in this work displayed high ionic conductivity, uniform pore size, low interfacial resistance and stable ionic conductivity with storage time. The ionic conductivity of polymer electrolytes was measured with various lithium salts, and the conductivity showed $3.3\times10^{-3}S/cm$ at room temperature when $LiPF_6$ was used as a lithium salt.

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell (연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.