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Two Layer Modelling with Applications to Exchange Flow and Internal Tide
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Abstract[] A numerical study of a two-layer, stratified flow is investigated, using the implicit finite difference
method in one dimension. The results of computational method have been tested and, in case of lock exchange
flow, compared with the results of experimental data. The results of model experiments with various interfacial,
bottom friction coefficients along with various time weighting factor of numerical scheme and dissipative
interface are shown and discussed. Two-layer model experiment has been also carried out to investigate the
generation and propagation characteristics of internal tidal wave over the steep bottom topography under
stratified condition. The internal wave seems to well radiate through the downstream boundary under the
experiments adopting radiation conditions both at two layers and only at upper layer, confirming the
applicability of radiational boundary condition in stratified flows. It is also shown that the internal wave
through the downstream boundary propagates more actively with increasing thickness of lower layer in the
downstream. This implies that the potential tidal energy in the interface will depend upon the thickness of
lower layer for the constant thickness of upper layer.

Keywords : two layer modeling, exchange flow, internal tidal wave, radiational boundary condition, time
weighting factor, stratified flow
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1. INTRODUCTION is induced mainly by salinity difference between fresh

and salt waters and such stratification is incorporated

Stratified flow is a common phenomena in estuaries, with tidal variation to often form an oscillating salt
lakes and oceans. In case of estuaries the stratification wedge which is closely related to shoaling phenomena.
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In lakes stratification or stratified flow occurs due to
daily or seasonal temperature variation of atmosphere
and also it occurs by cooling water discharged from
power plant. In oceans they exist when water masses
of different origins meet each other. On a large scale
density variation in oceans happens mainly due to unbal-
anced solar radiation whose quantity varies according to
latitude. Local stratification could also occur by thermal
discharge or accidental oil spreading. In addition to strati-
fied flow of water the behavior of front between air and
warm air in atmosphere could be treated as a stratified
flow. Due to its importance both from theoretical and
practical points of view this problem has been one of the
extensively studied topics in fluid mechanics.

When we try to solve the stratified flow problem
numerically two approach methods are available. one is
the traditional layer approach method and the other is
the method to use turbulence level model. Compared
with level model, the layer model has more advantage
to examine the physics of stratified flows. About the
numerical scheme, previously computational models in
one dimension using explicit scheme were introduced
by Vreugdenhil (1970) and Hodgins et al. (1977). An
implicit scheme was described by Abbott and Grubert
(1972) and Hodgins (1979) to treat a two-layer equa-
tion. In case of using explicit scheme the major compu-
tational problem is related to numerical stability. Due
to the great difference of velocity of propagation of
external and internal waves, which is often case in
nature, it is required to decouple the original coupled
equations to set up a reasonable computation for the
internal modes, as noticed by Vreugdenhil (1970).
Explicit scheme becomes, however, impractical for
simulation in deep water. Implicit scheme overcomes
this stability restriction and it can use coupled flow
equation as a governing equation. The main restriction
of implicit scheme in this aspect is considered only for
the purpose of increasing the numerical accuracy. With
these several other considerations, noted by Abbott
(1972), lead to the use of an implicit scheme.

In this paper the development of two layer model in

one dimension is described in order to investigate the

phenomena related to stratified flows, especially with
applications to exchange flow modelling and the funda-
mental investigation for the generation and propagation
of internal tide over the steep bottom topography
occurring in the shelf break region such as in the East
China Sea. The numerical method based upon the
extension of Abbott and Ionescu (1967) scheme was
adopted in order to solve the coupled equation system
of the two layer flow. The developed model is initially
verified against the laboratory experimental data avail-
able for the exchange flow. The applicability of radia-
tional boundary condition was also examined for the

layer model.
2. THEORETICAL DESCRIPTION

2.1 Governing Equations

A two-layer stratified nearly horizontal flow is consi-
dered in terms of the definition sketch, the lower layer
as is shown in Fig. 1, in which subscripts 0 is used to
indicate the lower layer. u and u,, indicate upper and
lower layer velocity, respectively, and p, p, denote
volume flux at each layer.

A mass flux, w,, leaves the bottom fluid to enter the
top fluid. In addition to the usual wind stress 7, and
bottom stress 7,, an interfacial stress 7; is also intro-
duced. There are extensive literatures on these exchange
and shear stress (Abraham and Eysink, 1971; Ellison and
Turner, 1959). This entrainment effect was assumed to be
zero in real calculation. The following conservation laws
may then be written following Abbott (1979).

Conservation of mass:

%@h)+5ix(Puh)—(P0W0_Pw)=0 @

d
2 (o) + (pyuohe)—(pw —pow) =0 (@)
ot ox
Conservation of momentum:
0
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Fig. 1. Definition sketch for a stratified flow.

~(puw — pougwo) + (% — ) =0 3
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or 2 ox
+(puw — pougwe) + (%, —tw) =0 C)]

In the above equations several physical processes
were introduced. Exchange of fluid across the interface,
with w, crossing from the lower to upper layer and w
crossing the upper to the lower layer, as schematized in
Fig. 1. These exchange may take the full density of
their initiating layer across to their receiving layer, or
they may work with only a reduced part of the density
difference. In equation of motion an interfacial stress
was introduced. as well as wind stress, and bottom
stress. It is seen that in the absence of interfacial mass
transfers, both Eq. (1) and Eq. (2) retain the conservation
form, individually. Their sum, corresponding to a mass
balance over the total fluid, provides also a conser-
vation. It is seen that if p and p, are constant in each
layer, Egs. (1) to (4) reduce to

&, 2 (uh)- (—w0 w)=0 ®)

oh

G+ )~ (Eow — =0 (©)

%(uoho)+ —(ué h0)+gh0 (h0+/1h+Z)
—(Auw —ugwo) + (7, — 5)/pe=0 )

d d d
=70+ )+ gl th +Z) + (uw ~Dugwy)
(% =w)/p=0 ®
The two-layer system is closed with the scalar conser-

vation equations:

op .0 P _ Wo ..
o T4 Daz h(Po p=0 €))

9 %o

o o= D= ——(p pub0)=0  (10)

or in the form
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= 11
ot ox ¢ (1)
in which
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In Egs. (9) and (10) the density variation in each layer
is shown to be due to advective, diffusive processes
within each layer and mixing effect between layers.

Both from the computational and analytical point of
view it is sometimes required that the governing equa-
tion system be simplified or take alternative form. We
proceed to consider the characteristics of physical sys-
tem. When all exchanges, stresses and bed variation are
excluded and the time and spatial variations of density
in each layer are neglected, the Egs. (5), (6), (7), (8)

reduce to

—t+u—+h—=0 (13)
L ih—L= 14)

rgdh as)

du, auo oh
——+u A—+g—=0 16
a Mo TR T (16
The equation system (13) to (16), with equations of
variation, gives the equivalent matrix system as (Abbott,

1979)

1w 0 h 00 00 oh,/3t 0
0 g1 u 0X 00 oh,/0x 0
00001 u0h Qo 0
0 g 000 g 1l u du/ox| |0
ddc 00000 O n/dt | |dh 17)
0 0 didc0O OO ok /3x duy
0 000 drdc0 0 du /ot dh
0000 0 0 dtde) ‘ousak du
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Then, equating the determinant of the coefficient ma-
trix to zero, we obtain the condition that the vector of

derivatives be indeterminate

ug—x hy 0 0
g ug—-x Ag 0
0 0 wu—i h a8
g 0 g u-x

where x =dx/dt are then the characteristic directions.
Writing out the determinant gives the characteristic

equation
[(o—x) — ghol[(u —x)* —gh]-Aghoh =0 (19)

A graphical method to investigate Eq. (19) was
described by Abbott and Torbe (1963). The appro-
ximate solution of Eq. (19) is given in Vreugdenhil
(1970) as follows:

uh +uyh
ha= = £ B Gk 20)
L. hotudh | [g(l-l)hho (u ‘“0)2""0]1/2
U h+hy T h+hy (h +ho)?
1)

with some assumption. x;, and x;, agree with the celer-
ities of long surface wave and a long internal wave,
respectively. The order of magnitude of x,, and x,, is

determined by square roots as follows:

»
X34 (1=A)hhy  (u—uglhh,
X1, (h+h$) glh +he)

@2)

For usual sea water the order of magnitude will be 107~
10*

2.2 Data Structure and Boundary Condition

As mentioned by Abbott (1961, 1963), the character-
istics are associated in pairs such that each pair apper-
tains to a fluid layer of the system, then it can be said
that when two of the characteristics associated with any
layer have the same sign, then the flow in that layer is
a supercritical flow, while when these signs are dif-

ferent it is a subcritical flow. With this convention the

t t
(@ ®
' ©) t (d)
(e

Fig. 2. Five data structure of characteristics for two-layer
flow (Abbott, 1979).

five basic characteristic structure, as shown in Fig. 2,
can be explained.

From the method of characteristics (Abbott, 1963) it
is shown that the number of data points presented at a
boundary equals the number of characteristics initiated
from any point of that boundary, so Fig. 2(a) would
require four-point left boundary data and zero-point
right boundary data. Fig. 2(c) would require two point
left boundary data and two point right boundary data,
and so on. But it is seen that it is not only necessary to
present, the correct number of data points at each
boundary, but it is also necessary to present these in
the correct place. For the limiting case details are given
(Abbott, 1961 and 1972).

In this study the range is restricted only to the data
structure shown in Fig. 2(c), that is, subcritical-subcr-
itical case. it means that it is required to give both left
and right boundary two data with one data to upper
layer and one data to the lower layer in each side. In
fact it is seen that the two-layer fluid is seen to possess
five characteristic structure and nine data structures,
although in practical case only five appear to be of

interest of the latter.

3. DISCRETE APPROXIMATION OF
CONTINUOUS FORMS

The selection of a particular finite scheme to solve
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any of the equation systems numerically determines the
space-time distribution of the dependent variables. In
this study to solve two-layer flow numerically the
physical system is simplified. That is, the study is
restricted to consider the flow per unit span width in a
channel of uniform depth with interfacial and bottom
stresses, but without vertical turbulent mixing and long-
itudinal stress. In spite of this simplification we can
still study many essential aspects of two-layer system
from both physical and numerical point of views,
through a appropriate simulation.

With interfacial and bottom stresses the Egs. (1) to
(4) can be written in the algorithm form as follows:

L f +m, o a{ M%{:s 23)
where M, =1, the identity matrix and

h 0
hy 0
AR
Po P P
T %
Po Po
0 0 00 [ o 6 10
y 0 0 00 " 0 0 01
17| 2p s M= p?
2 9 90 _r
7 g " gh 00
2p,
L r§
h, gh) gh #2 00

And in this case the transport-diffusion equation is

written as follows:

d d
'a% +Ma—£ =8 4)
where
i D op
p h 0 ox?
f= Po’M_ Oﬂ’S_Dazpo
h ox?

In the above simplified situation the density effect

appears in the dynamic equation only as a constant A.

So, even though there is no vertical mixing between
two layers, at least the time or spatial variation of
density in each layer is required for this transport

diffusion equation to have more than symbolic form.

3.1 The System of Discrete Approximation

The difference method introduced by Abbott and
Tonescu is generalized to the coupled two-layer equa-
tions. The implicit discrete’ operator with space-stag-
gered dependent variables can be defined. j is grid
number, and 6 defined as a forward time weighting.
Then in finite difference form the finite difference equa-
tions only for the continuity and momentum equations

of upper layer become.

1 n
hlr;+ _hj +{ p;:ll _pn+1
v

= (-0 P P’l] 0 (25)

pp-pr 2| i, g
At h 2Ax

P hid —hid 1-0 ’“ 26
+(g —;;)T‘r( ) (26)

" kg ke 1-8 ki~ y
+gh| 0 A TA-0)— =%/p

The finite difference form for the equations of lower
layer can be obtained in a similar manner to those of
upper layer. Each equation of the finite difference

equations can be rearranged to take the form

A;, ;h, 1+B; jhoj+Ci jpj +D; Py
hjg+F; jhojy=G; 7N

' i

where i=1,2,3,4 denote difference equations corres-
ponding to continuity equations of upper and lower
layers and momentum equations of upper and lower
layers, respectively and j, grid point.

The expression of stresses in finite difference form
requires care. According to the numerical study (Abbott
and Verghoog, 1968) the following form is necessary
for computational stability. With a linear relation for
the interfacial stress

=k (u—ug)AZ, AZ = (h +ho)/2 (28)
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the difference form is

_ kO {p,v+1_pa7l}+k,»(1—e)[gy__paj} -

7
P Az h]r_H—l hg;l AZ" hj'f h'(;j

And with a relation for the bottom stress

T,
2 =k u|ug| (30)
Po

the difference form is

n+l
P
7, = 6k, pi*! [T]
0

n+l "

Py

hO

Py

h

0

a(P
+(1-0)k, py (7,2]
]

Gy

with these forms the coefficients of Eq. (27) have their
explicit forms.

The truncation error of the finite difference form can
be simply obtained in a sense of Taylors series
expansion about the centering point. Then it is seen
that the difference equation system are unconditionally
consistent with the continucus system of Eq. (23). The
order of truncation error is ((At, Ax"). But when 8=0.
5 the odd order term in At cancel and reduce to O(At,
Ax’). That is, the truncation error in Eq. (26) in time,
E(1), is

E0) =22 aa-ep- e+ 04 32)

2! o2
so E(f) reduces to O(AF) for 8=0.5

The solution at (n+1)At of these four equations
converge to solving 6 band width matrix in the cor-
responding set of algebraic equations. The system of
algebraic equations have the structure to be solved by

double sweep method.

3.2 Stability Analysis

The linear stability analysis of discrete equation sys-
tem is made using the Von Neumanns method.
Let

P} =Y & exp(ikmj Ax)
k

hi=Y &  exp(ikmj Ax)
k

ps; = z &3 x exp (ikom j Ax)
X

hoj =Y Eppexp (ikomj Ax) (33)
K

Then the difference equation system for certain wave

component provides

[d a+ibe 0 g | bk
i6g d 0 0 ||&s
0 i6r d e+ibs| |&,|~ G4
0 0 ifg d Eir
[ ¢ a-ig-8p 0 —i(1=8)c | |5
i(1-6)g d 0 0 Sok
0 -i(1-6) d  e-i(1-8s| |,
| o 0 -il-0g d £,
where

2
_ p——gh
—2p h?
a=——cosmkAx ,b = sinmk Ax ,
h At
2,
c=28 smmkAx,d-i,e= Po cosmk Ax ,
At hoAt
PR
- |2 g,
he A
s = sinmk Ax , r = ghy— sinmk Ax ,
Ax Ax
1 . T
= kAx ,m=———
g . sin m m T -DA

and k denotes wave component. Then for the ampli-
fication factor, @, satisfying &' = ¢&; ,, the indeter-
minancy condition of determinant yields the quadratic

equation

[1+g7§z-(s +b)+ é’%(bs —rc)] (¢p-1)*

4¢%6°
d4

+[2792g— (s +b)+ (bs—rc)] (¢—1)

l:‘;g‘i‘ (S +b)+ 6gdz492 (bS _rc)] (¢__1)2
[dije (bs —rc):l -1+ i—i (bs —rc)=0 (35)

The equation can be solved numerically using the
data to be used for the study of lock-exchange. The
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Fig. 3. Amplification portrait of scheme.

complex amplification factors consist of two pairs of
complex number, each having its conjugate. The
calculated result is plotted in case of Cr=8.0 in Fig. 3.

For 6=0.5 the result shows that this scheme has no
amplification error. But for 6>0.5 the scheme is shown
to be unconditionally stable and dissipative while the
scheme is unstable for 6<0.5. This scheme is seen to
be very effective to prevent the short wave from
growing for 0.5, but damping effect even in relatively
long components is shown to be severe for 6=0.6. For
several conditions of 6 and Courant number the results
show that with caution against non linear energy
transfer the choice of 6=0.5 gives the scheme optimum
accuracy. The stability can be ascertained by showing
that the energy norm is bounded through the simulation.
Phase error can be also studied based on the form, that
is, O=-arctan((Im(®P)/Re(P))/2 Cr/Nx).

3.3 Solution Algorithm

In this section the solution method of the algebraic
equation obtained in Section 3.2 is treated. As men-
tioned in introduction, the study is restricted to sub-
subcritical flow case, in which case the double sweep
algorithm is efficiently used to obtained solution. In the
study of Abbott and Grubert (1972), the solution
algorithm in the more general conditions had been studied.

The algebraic relation, for the solution of the scalar

form of system (27), is suggested.

Pi=Highj 1+ g hopn+Jjn (36)
Py =K; P, +L;h;,  +M; (37

hOj =Nj+1P0]-+1+Qj+1Pj+l+Rj+1 (38)
hy=8;ho; =T Pyjy+U; (39

Now using the equations of system (27) and the
above four relation the recurrence relation of each
coefficient can be obtained. The computation is made
through, what is called, double sweep procedure. The
first sweep is initiated from one boundary or the other
boundary. From the species of the given boundary
condition the initiation of appropriate coefficients is to
be calculated during the first sweep procedure. Then
from the other boundary condition of the other side the
return sweep is initiated.

In case of transport-diffusion equation it can be sol-
ved by using simple vector double sweep method.
Generally speaking, the transport-diffusion process will
influence the dvnamic process, and vise versa. So, the
dynamic and transport-diffusion computation should be
linked to connect two processes. This is usually atta-
ined through a form of multi staging that is called
parallel running was not sufficiently appreciated due to
the assumption of homogeneous flow in each layer,
and the neglection of mixing. But through the exper-
ience the truncation error of transport-diffusion seems
to grow as time elapses, meaning that more accurate
scheme be employed to treat this effect in case long
term simulation is required. When density is set to be
constant in each layer, the transport-diffusion need not

to be computed.
4. TESTS AND APPLICATIONS

To investigate the performance of the model the
basic tests consisting of static and swing tests have
been carried out. The model experiments have been
carried out both for the lock-exchange flow and for the
generation and propagation of internal tide over sharp
bottom topography along with general applicability exper-
iment for the condition of the downstream boundary

conditions.

4.1 Static and Swing Tests

The testing of the computer program code for the
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simulation of two layer flow is carried out. As a check
of consistency of the mathematical model what is cal-
led, static and swing test are carried out.

To see the consistency of a mathematical model a
test was carried out, using the initial data of uniform
depth with each layer thickness 1 m as well as with
zero initial velocity. No stress and horizontal bed con-
dition were given. As a result of computation no
change of depth happens and in case of momentum
field no change of initial field was observed to the
order of about 10° while a small deviation of about 10
order was observed. Until sufficient time steps the
magnitude remains uniformly bounded. This result is
sufficient to show that the model is quite good on the
consistency.

As another check of consistency of the finite dif-
ference equation swing test is investigated. with a init-
ial condition of uniform total depth and a linear slope
of interface the test is carried out, as well as with the
condition of zero initial momentum field at both layers.
In this test time weighting, 6 is chosen as 0.5 and no
stress is included in equations. The response of internal
and external mode is well represented as expected. The
period of the internal mode is shown to be about 9
seconds with p/p,=800/1100. The comparison of the
results with the theoretical or experimental one is not
made. The more comparison with field data is made in

lock exchange experiment in the following section.

4.2 Application to Exchange Flow

The result of application of model to a lock exch-
ange is given. The comparison of the simulated result
with the laboratory result reported by Hodgins (1979)
is made in four cases with each case having the result
of the four different elapsed time steps. Each case is
investigated to see the effects of time weighting, the
coefficient of stresses, dissipative interface to the result
of simulation, and finally to see the response of model
with stress coefficient suggested by Hodgins.

Shortly is the experiment summarized that Hodgins
carried out in a rectangular flume with dimension and

initial configuration as shown in Fig. 4, as described in

0.3

0.2

h,and H (m)

= - Im 2m 3m
=0 =80

Fig. 4. Definition sketch of experiment.

his paper. The exchange flows were produced by quic-
kly removing a thin barrier between the two fluids; the
barrier was not vertical but at a inclination matched to
the 5 cm grid spacing.

The free surface and interfacial positions of a number
of exchange flows were recorded photographically using
water dyed black and clear petroleum spirits as the two
fluids. The object here was not to create a “discon-
tinuous” front, but to obtain nearly that with thin layer
on either side of the barrier. Then the mathematical
model and its solution procedure are directly applicable.
Each experiment was started by removing the barrier
quickly, but smoothly, by hand. Optical distortion of the
observation was by using two cameras, exposing simul-
taneously at regular intervals and timing controlled by
including a clock in one photograph. The use of water
soluble ink for dyeing the lower layer had the un expe-
cted advantage of creating a thin film of ink, particles on
the free surface above the petroleum spirits and so
rendering it highly visible. The value of ¢ has an error of
+0.2 s and the internal wave period is approximately 16 s.
These tests have the advantage of being easily created
and observed in the laboratory, and of severely testing
the model response since the propagatidh of a large
amplitude internal wave, at about the limiting resolution
of the computational grid must be properly computed.

The physical parameter used in the simulation is

Table 1. Physical parameter of lock exchange experiment.

p=0.78410.005 g/ml

£=981.924 cm/s’®

Initial condition (shown in Fig. 4)
hiy=26310.05 cm
hop=23.37%0.05 cm

Po = 1.001£0.0005 g/ml
j=060

by =22.50+0.05 cm
Hygo = 3.50+0.05 cm
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Table 2. Comparison times of experimental and numerical
ones.

exposure experiment (s) n (time steps) elapsed time (s)

1 21+02 10 20
2 47402 23 4.6
3 89102 45 9.0
4 16.0£0.2 81 16.2

ne=45

£

L

< [+ -
g 30

=4

@

o

=

10 \/"—\,\'s/\/\/\

...............

100 20
Distance (cm)

Fig. 5. Comparison of calculated levels(—) with observed
ones(--) for #=0.5, K;=0.0004 cm/s, K,=0.0001.

listed in Table 2. Four times in each case of variable
conditions is the numerical result compared with experi-
mental results. Both the elapsed time and time steps to
be compared are listed in Table 2.

Case 1:

In this case (6=0.5) interfacial and bottom stresses
are incorporated. And K; equals 0.0004 em’/s and K,
equals 0.0001. Even though much attempt is not made
to produce best agreement with the observed result,
based on published values of coefficients for oscillating
flows, the simulated result gives reasonable agreement
with that observed. During the first cycle both the

surface and long internal mode are well modelled, as

n=45

hoand h (cm)

20

0

0 00 300

1(mDi.st.anr:e (cm)2
Fig. 6. Comparison of calculated levels(—) with observed
ones(--) for 8=0.6, K;=0.0 cm/s, K, =0 =0.0.

shown in Fig. 5. The short internal mode superposed
on the long internal mode is also relatively well
simulated even though this mode is thought to be better
simulated with more fine grid.

Case 2:

The response of model is tested with 6=0.6, but with
stresses. In this case the general phase pattern of inter-
nal mode is also seen to be well simulated, as shown
in Fig. 6. However, as expected from the characteristics
of scheme, the dominant smoothing effect is observed
with short internal waves effectively eliminated. In this
case the pattern of two mode is almost coincident with
that simulated by Hodgins, as expected. However,
careful inspection of result shows that a slight phase
delay or advance compared with that observed is
shown and in spite of its preferential dissipation effect
over short waves ranges a slightly low energy dissipa-
tion from the whole system is seen to be incorporated

when we compare the simulated interface level with the
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30 n=10

hgand h (cm)

20

10

[1]

00 300

100 2
Distance (cm)

Fig. 7. Comparison of calculated levels(—) with observed
ones(--) for 6=0.5, K;=0.0 cm/s, K, =0.0004, o.=
0.075.

observed one at n=45 and n=81.

Case 3:

As examined by Hodgins, with dissipation term will
the nonlinear instability in sufficient time steps happen
in case of 6=0.5. In that case such instability could be
avoided through the introduction of dissipative interface
(Abbott, 1979) of the form wi'". constant o

f=fi+alfin —2fi+ fial

With both dissipative and bottom stress an investiga-
tion is made. The overall shape of the internal mode,
shown in Fig. 7, is seen to be well simulated through
the one cycle. The attempt to use only dissipative inter-
face is not made.

Case 4:

Through the study by Hodgins (1979), the interfacial
stress coefficient is chosen K;=0.008 cm’/s to give the
result a reasonable agreement with observed one with
fixed valued of K,=0.005. Even though both longitu-

20

hpand h (cm)

Distance (cm)

Fig. 8. Comparison of calculated levels(—) with observed
ones(-) for 6=0.5, K;=0.0008 cm/s, K, =0.0005.

dinal stress and lateral stress are included in his
calculation as a form of T,=Ku|u| or T,=Kuy|u,|
with K, =0.01. An attempt is made to investigate the
response of model without this term. As shown in Fig.
8, the phase and amplitude pattern are greatly deviated
from that obtained by Hodgins in case of 8=0.6. This
response could be partly or wholly explained by the

neglection of lateral and longitudinal stresses.

4.3 Application to Internal Tide

The internal tide is well known to exist in the
continental shelf break. The layer model is considered
as one of useful tools to investigate the generation and
propagation in such a region. Even though Coriolis
force is neglected in one dimensional two layer model,
the basic characteristics of generation and propagation
of internal tide would be sufficiently investigated using
present model. In this application the adaptation of
bottom topography and open boundary conditions at
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Fig. 9. Computed temporal variation of interfacial disturbance at the shallow downstream region of /,=50 m and /=100 m.
The amplitude of interfacial disturbance is exaggerated 10 times for visual effect. Following figures are samely

exaggerated.
downstream channel are further considered in addition coefficients of K=0.0004, K,=0.0001 and a=0.075 were
to simple basin study in previous application. used for this experiment. The densities of upper and
An experiment was first carried out to investigate the lower layers are set to be 1021 and 1026 kg/m’, respec-
response of radiational boundary conditions at both the tively, which are characteristic values during summer in

upper and lower layers in the downstream channel. The the shelf break of the East China Sea (Lie, 1995). The
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left forcing boundary condition is as follows.

upper layer: O =A cos (ax - §), A=10.0m’/s, 8=90",
@=2r/T with T=12 hr
lower layer: 0 =0.0

The right open boundary condition of channel is as fol-

lows.

upper layer: %% +C% =0, C =VNg(h +ho)

a_¢ %:
ot +C8x 0,

_ /g(l-,l)hho
€= h+h,

where variable ¢ denotes mass flux, & and h, the

lower layer: @ =0.0 or

thickness of upper and lower layers, respectively. The
h and h, in the upstream region from left boundary to
150 km are 100 and 1,000 m, respectively, while those
in the upstream region from right boundary to 120 km
are he=50 m, H=100 m. The grid interval is 1.5 km and
computation time interval (df) is 30s. In case of right
open boundary condition the radiational condition at
both layers may be used. However, the results with Q=
0.0 at lower boundary shows similar results to the
results using radiation condition. This may be due to
the transfer of minor energy since the channel length of
downstream part of channel is relatively long,

The computed every 2 hour variations of interface
and free surface with the downstream thickness of h,=
50 m, A=100 m are presented in Fig. 9. The variation
of interface was 10 times exaggerated for visual effect.
It is shown that the propagation features of internal
wave from upstream to downstream channel is well
simulated, confirming the applicability of two types of
boundary conditions. Considering the propagation fea-
tures both in downstream and upstream channels, it is
seen that the internal wave in the shallow downstream
seem to show severely damped oscillation. This experi-
ment helps us examine the variation pattern of incident
internal wave over the sharp bottom topography and
investigate if radiational boundary condition works.

The experiments with different lower layer thickness

were designed in order to investigate the generation
effect of internal tidal wave only in the downstream.
The depth in upstream channel was set to be 120 m,
and 200 m in the downstream, since lower layer thic-
kness was. The results with #,=100 m and 4A=100 m at
the downstream channel are shown in Fig. 10. Fig. 11
is the result with downstream channel thickness of hy=
20 m and /=100 m. In both experiments the layer thic-
knesses in the upstream region are 4,=20 m and A=100
m, while those in the middle channel are 4,=1000 m
and 4=100 m. In Figs. 10 and 11 the generation effect in
the shallow upstream region seems to be largely redu-
ced. However, the generation of internal tide in the ups-
tream shelf break region appears clearly.

It is also seen that the internal wave in case of dow-
nstream thickness #,=100 m propagates more actively
through the downstream boundary, compared with the
case of downstream thickness 4,=20 m. That is, the
magnitude of interfacial wave disturbance in the down-
stream region of Fig. 10 appears larger than that in Fig.
11. It can be said that the energy transfer occurs more
actively with increasing thickness of lower layer in the
downstream. This result suggests that the internal tidal
wave can only propagate for the condition greater than
some critical lower layer thickness, also implying that
the propagation of internal wave will be limited if the
thickness of lower layer is very thin.

The seasonally varying layer thickness often revealed
from the density structure in the shelf break, such as
that in the East China Sea, implies that the tidal signal
in the interfacial disturbance will show corresponding
changes. The internal oscillation induced by internal
tide will be extremely restricted for the season when
barotropic feature over the water column prevails.

The additional experiments seem to be required only
in order to examine the generation effect in the downs-
tream shelf break region. Lamb(1994) used a model
based upon rigid lid assumption in quasi 3-dimensional
numerical experiment for the George Bank. He was
able to treat the upstream and downstream boundary
conditions more easily only by introducing barotropic

components at both upstream and downstream boun-
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Fig. 10. Same as in Fig. 9 except for at the shallow downstream region of 4,=100 m and 4 = 100 m.

dary. In future more flexible approaches may be exa-
mined in order to investigate the generation effect over
shelf break, even though the shallow thickness of lower
layer in layer model was shown to be useful for such

purpose.

5. DISCUSSIONS AND CONCLUSIONS

The numerical implicit finite difference scheme descr-
ibed by Abbott and Ionescu is shown to be success-
fully applied to the simulation of two layer depth avera-
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Fig. 11. Same as in Fig. 9 except for at the shallow downstream region A, =20 m and # =100 m.

ged governing equations. The numerical exchange test
shows that the internal and external modes, both in
phase and amplitude, can be accurately simulated over
the relatively large time increment compared with expl-
icit scheme. And the dissipative characteristics of

scheme for time weighting factor 6<0.5 could be used

to eliminate the short wave causing the instability to
possibly occur after sufficient time. When long term
simulation is required, the dissipative interface with 6=
0.5 could be effectively applied for numerical stability.
Through the several case studies of lock exchange flow

the result of model is shown to work reasonably, and
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so possibly applied to the simulation of practical situation.

Two-layer model experiment has been also carried
out to investigate the generation and propagation charac-
teristics of internal tidal wave over the steep bottom
topography under stratified condition. The internal wave
seems to well radiate through the downstream boundary
under the experiments adopting radiation conditions both
at two layers and only at upper layer, confirming the
applicability of two types of boundary conditions. It is
shown that the energy transfer occurs more actively with
increasing thickness of lower layer in the downstream.
This result suggests that the internal tidal wave can only
propagate for the condition greater than some critical
lower layer thickness, also implying that the propagation
of internal wave will be limited if the thickness of lower
layer is very thin.
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