• 제목/요약/키워드: interfacial bond behavior

검색결과 55건 처리시간 0.022초

Experimental Study on Interfacial Behavior of CFRP-bonded Concrete

  • Chu, In-Yeop;Woo, Sang-Kyun;Lee, Yun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.127-134
    • /
    • 2015
  • Recently, the external bonding of carbon fiber reinforced polymer (CFRP) sheets has come to be regarded as a very effective method for strengthening of reinforced concrete structures. The behavior of CFRP-strengthened RC structure is mainly governed by the interfacial behavior, which represents the stress transfer and relative slip between concrete and the CFRP sheet. In this study, the effects of bonded length, width and concrete strength on the interfacial behavior are verified and a bond-slip model is proposed. The proposed bond-slip model has nonlinear ascending regions and exponential descending regions, facilitated by modifying the conventional bilinear bond-slip model. Finite element analysis results of interface element implemented with bond-slip model have shown good agreement with the experimental results performed in this study. It is found that the failure load and strain distribution predicted by finite element analysis with the proposed bond-slip are in good agreement with results of experiments.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

콘크리트내 표면매입 보강된 FRP 판과 콘크리트 사이의 착-미끄러짐 관계 해석 (Analysis on the Interfacial Bond-Slip Relationship between ear Surface-Mounted FRP Plate and Concrete)

  • 서수연
    • 콘크리트학회논문집
    • /
    • 제26권1호
    • /
    • pp.79-86
    • /
    • 2014
  • 이 연구는 표면매입 보강된 FRP 판과 콘크리트사이의 응력전달기구를 이론적으로 연구한 것으로서 이선형 부착모델을 이용하여 부착거동을 묘사하고 이를 실험 결과와 비교하여 신뢰성있는 해석방법을 제시하였다. 연구로부터, 표면매입된 FRP 판과 콘크리트사이의 계면특성을 고려한 미분방정식에 이선형 부착-미끄러짐 관계곡선을 사용하여 해석할 경우, 모델의 임계값인 최대전단강도와 미끄러짐 변위, 그리고 박락에 의한 연화거동이 시작될 때의 변위값 선정과정이 제시되었다. 또한 제안된 모델을 사용하여 부착길이가 다르게 보강된 표면매입 FRP 판의 미끄러짐 거동을 해석한 결과 실제 거동을 매우 근사하게 묘사할 수 있는 것으로 나타났다.

복합재료내의 계면 접착 특성에 따른 지능형 구조물의 진동제어에 관한 연구 (Studies on the Vibration Controllability of Smart Structure Depending on the Interfacial Adhesion Properties of Composite Materials)

  • 한상보;박종만;차진훈
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1093-1102
    • /
    • 1998
  • The success of controllability of smart structures depends on the quality of the bonding along the interface between the main structure and the attached sensing and acuating elements. Generally, the analysis procedures neglect the effect of the interfacial bond layer or assume that this bond layer behaves like viscoelastic material. Three different bond layers. two modified epoxy adhesives, and one isocyanate adhesive were prepared for their toughness and moduli. Bond layer of the chosen adhesive provides an almost perfect bonding condition between the composite structure and the PZT while bended significantly like arrow-shape. The perfect bonding condition is tested by considering various material properties of the bond layers. and based on this perfect bonding condition, the effects of the interfacial bond layer on the dynamic behavior and controllability of the test structure is experimentally studied. Once the perfect bonding condition is achieved. dynamic effects of the bond layer itself on the dynamic characteristics of the main structure is negligible. but the contribution of the attached PZT elements on the stiffness of the multi-layered structure becomes significant when the thickness of the bond layer increased.

  • PDF

콘크리트 표면처리와 CFRP 단부정착 방법에 따른 부착특성실험 (Experimental Study on the Bond[ Behavior with Concrete Surface Preparation. and Anchorage Type of CFRP)

  • 유영준;조정래;정우태;박종섭;박영환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.579-584
    • /
    • 2003
  • For strengthening deteriorated concrete structures, externally bonded FRP sheets or plates using epoxy resins are widely used. For the external FRP composites to be effective in improving the performance of the structure, bond between FRP composites and concrete is required. In general, the most frequently observed failure mode in FRP strengthened concrete structures is debonding failure at the interfacial section between FRP and concrete. Therefore, it is very important to find out the interfacial behavior properties. This paper presents experimental results of the relationship of concrete and FRP sheet for some conditions including concrete compressive strength, concrete surface preparation to observe the bond behavior between concrete and FRP sheet and various anchorage types to increase the bond capacity of FRP sheet.

  • PDF

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.

아라미드 FRP 스트립과 강판 사이의 계면 부착응력에 관한 실험적 연구 (Experimental Study on Interfacial Bond Stress between Aramid FRP Strips and Steel Plates)

  • 박재우;류재용;최성모
    • 한국강구조학회 논문집
    • /
    • 제27권4호
    • /
    • pp.359-370
    • /
    • 2015
  • 본 연구에서는 AFRP 스트립과 강재사이의 부착거동에 관한 실험적 연구를 수행하였다. 실험적 연구를 통해 AFRP 판과 강판사이의 계면부착거동을 관찰하고, 계면부착응력을 산정하는 것이 본 연구의 목표이다. 실험변수로는 부착길이와 AFRP의 두께를 선택하였으며, 18개의 일면전단시편 제작하여 실험을 수행하였다. 실험결과 부착길이와 AFRP 두께가 증가함에 따라 하중값을 증가하였으며, 부착길이와 AFRP 두께가 증가함에 따라 각각 63%, 86%의 하중값이 증가하였다. 끝으로 강재와 AFRP 사이의 부착응력-슬립관계를 산정하였다. 부착응력-슬립관계는 탄성선형거동을 보이고 있으며, 부착길이와 AFRP 두께는 부착응력과 파괴에너지에 영향을 덜 미치는 것으로 나타났다.

Bond Analysis of Ribbed Reinforcing Bars

  • Park, Oan-Chul
    • KCI Concrete Journal
    • /
    • 제13권2호
    • /
    • pp.19-25
    • /
    • 2001
  • A simple expression to predict bond strength of reinforcing bars with rib deformation to the surrounding is derived for the case of splitting bond failure. Finite element analysis is used to model the confining behavior of concrete cover. The roles of the interfacial properties, specifically, the friction coefficient, cohesion, the relative rib area and the rib face angle are examined. Values of bond strength obtained using the analytical model are in good agreement with the bond test results from the previous studies. The analytical model provides insight into interfacial bond mechanisms and the effects of the key variables on the bond strength of deformed bars to concrete. Based on the comparison between the analytical results and the test results, the values of cohesion, coefficient of friction, and the effective rib face angle are proposed.

  • PDF

비선형 유한요소법에 의한 에폭시 피막된 철근의 부착에 관한 연구 (Bond Strength Evaluation of Epoxy-Coated Reinforcement using Nonlinear Finite Element Analysis)

  • 최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.65-68
    • /
    • 1991
  • Finite element analysis is used to study the role of interfacial properties on the bond strength of reinforcing steel to concrete. Specifically, the role played by epoxy coatings on the failure of standard beam-end specimens is explored. Experimental results show that epoxy coatings reduce bond strength, but that the effect is dependent on the bar size and the deformation pattern. The finite element model for the beam-end specimen includes representations for the deformed steel bar, the concrete, and the interfacial material. The interface elements can be varied to match the stiffness and friction properties of the interfacial material. Cracking within the concrete is represented using Hillerborg's ficticious crack model. The model is used to study important aspects or behavior observed in the tests and to provide an explanation for the effect of the various test parameters.

  • PDF