• Title/Summary/Keyword: interfacial angle

Search Result 208, Processing Time 0.022 seconds

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

Interfacial and Surface Energies Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites using Micromechanical Technique and Contact Angle Measurement (미세역학시험법과 접촉각 측정을 통한 변형된 Jute와 Hemp섬유 강화 Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) 복합재료의 계면 및 표면에너지 평가)

  • Park, Joung-Man;Son, Tran Quang;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • Interfacial evaluation of the untreated and treated Jute and Hemp fibers reinforced different matrix polypropylene-maleic anhydride polypropylene copolymer (PP-MAPP) composites were investigated by micromechanical technique and dynamic contact angle measurement. For the statistical tensile strength of Jute and Hemp fibers, bimodal Weibull distribution was fitted better than the unimodal distribution. The acid-base parameter on the interfacial shear strength (IFSS) of the natural fiber composites was characterized by calculating the work adhesion, $W_a$. The effect of alkaline, silane coupling agent on natural fibers were obtained with changing MAPP content in PP-MAPP matrices. Alkaline treated fibers made the surface energy to be higher due to removing the weak boundary layers and thus increasing surface area, whereas surface energy of silane treated Jute and Hemp fibers decreased due to blocked high energy sites. MAPP in the PP-MAPP matrix caused the surface energy to increase due to introduced acid-base sites. Microfailure modes of two natural fiber composites were observed clearly differently due to different tensile strength of natural fibers.

  • PDF

Shielding Effects of Bimaterial Interfaces by Crack Surface Asperities (균열 표면거칠기에 의한 이종재료 계면의 차단효과)

  • 채영석;권용수;최병선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.540-547
    • /
    • 1994
  • Contact and frictional locking conditions and the effect of shielding due to contact at the facet, which could be represented by the difference in energy release rate, as a function of phase angle of loading are analyzed in this study for the case of interfacial cracks by assuming single crack-kink model. The analysis of contact effects on interfacial fracture resistance shows that relative shielding increases as the shear component was increased, which indicates a qualitative agreement with the previous experimental results.

Observation of Oxide Film Formed at Si-Si Bonding Interface in SFB Process (SFB 공정시 Si-Si 집합 계면에 형성되는 산화막의 관찰)

  • 주병권;오명환;차균현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.41-47
    • /
    • 1992
  • In SFB Process, after 110$0^{\circ}C$ annealing in wet OS12T(95$^{\circ}C$ HS12TO bubbling) atmosphere, the existence of the interfacial oxide film in micro-gap at Si-Si bonding interface was identified. The angle lapping/staining and SEM morphologies of bonding interface showed that the growing behavior of interfacial oxide made a contribution to eliminate the micro-gaps having a width of 200-300$\AA$. In case of the diodes composed of p-n wafer pairs made by SFB processes, the annealed one in wet OS12T atmosphere exhibited a dielectric breakdown phenomena of interfacial oxide at 37-40 volts d.c.

  • PDF

Surface and Interfacial Energetic Analysis of Amphiphilic Copolymers

  • Kim, Min-Kyun;Yuk, Soon-Hong;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.158-161
    • /
    • 1987
  • A Series of hydrophilic-hydrophobic copolymeric surfaces of 2-hydroxyethyl methacrylate (HEMA) and various alkyl methacrylate (RMA) have been prepared by in-situ solution copolymerization using a redox radical initiator. Contact angles of various probing fluids on the polymeric surfaces were determined in air (hydrophobic environment) and under water (hydrophilic environment). From contact angle data, the dispersive interaction contribution (${\gamma}^d_s$) and the polar contribution (${\gamma}^p_s$) to the total surface free energy (${\gamma}^d_s$) and interfacial energetic quantities (e.g., water-polymer, liquid-polymer interface, etc.) were estimated by surface and interface physicochemical theory. From the comparison of surface energetic components between hydrophobic and hydrophilic media, it is found that surface and interface energetic components of polymeric surface as a representative low-energy surface are highly dependent on environmental fluids. Also, from the correlation between interfacial energetic results and surface energetic criterion of biocompatibility, we found that HEMA/BMA, HEMA/HMA copolymer systems are in the region of biocompatibility.

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • 장수호;이석원;배규진;최순욱;박해균;김재권
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.79-86
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been considered in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compressive strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on the experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties could be well regressed through exponential and logarithmic functions of time.

Improved Efficiency by Insertion of TiO2 Interfacial Layer in the Bilayer Solar Cells

  • Xie, Lin;Yoon, Soyeon;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.432.1-432.1
    • /
    • 2016
  • We demonstrated that the power conversion efficiency (PCE) of bilayer solar cell was significantly enhanced by inserting interfacial layer between the organic bilayer film and the Al electrode. Moreover, the water contact angle shows that the bilayer solar cells suffer from the undesirable surface component which limits the charge transport to the Al electrode. The AFM measurement has revealed that the pre- and post-thermal annealing treatments results in different morphologies of the interfacial layer which is critical for the higher PCE of the bilayer solar cells. Furthermore we have investigated the electrical properties of the bilayer solar cells and obtained insights into the detailed device mechanisms. The transient photovoltage measurements suggests that the significantly enhanced Voc is caused by reducing the recombination at the interface between the organic films and the Al electrode. By inserting the TiO2 layer between the bilayer film and Al electrode, the open circuit voltage (Voc) was increased from 0.37 to 0.66V. Consequently, the power conversion efficiency (PCE) of bilayer solar cells was significantly enhanced from 1.23% to 3.71%. As the results, the TiO2 interfacial layer can be used to form an ohmic contact layer, serveing as a blocking layer to prevent the penetration of the Al, and to reduce the recombination at the interface.

  • PDF

Improvement of Mechanical Interfacial Properties of Silica/Rubber Composites by Silane Coupling Agent Treatment (실란 커플링제를 이용한 실리카/고무 복합재료의 기계적 계면 물성의 향상)

  • Park, Soo-Jin;Cho, Ki-Sook;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • Surface-modified silica holds considerable promise in the development of advanced materials for good mechanical properties and stability. In this work, the surface and mechanical interfacial properties of silicas treated with silane coupling agents, such as Y-methacryloxy propyl trimethoxy silane (MPS). Y-glycidoxy propyl trimethoxy silane (GPS), and Y-mercapto propyl trimethoxy silane (MCPS), are investigated. The effect of silane surface treatments of silica on the surface properties and surface energetics are studied in terms of surface functional values and contact angle measurements. And their mechanical interfacial properties of the silica/rubber composites are studied by the composite tearing energy ($G_{IIIC}$). As a result. the mechanical interfacial properties are improved in the case of silane-treated composites compared with untreated one. It reveals that the functional groups on silica surface by silane surface treatments play an important role in improving the degree of adhesion at interfaces in a silica-filled rubber system.

  • PDF

Effect of Oxy-Fluorinated Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (산소-불소처리된가 탄소섬유 강화 복합재료의 기계적 계면특성에 미치는 영향)

  • Oh Jin-Seok;Lee Jae Rock;Park Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.100-103
    • /
    • 2004
  • In this work, the effects of oxy-fluorination on surface characteristics of carbon fibers were investigated in mechanical interfacial properties of carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), FT-IR. and contact angle measurements. And their mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical stress intensity factor $(K_{IC})$. As experimental results, the $F_{1S}/C_{1S}$ ratio of carbon fiber surfaces was increased by oxy-fluorination, due to the development of the oxygen containing functional groups. The mechanical interfacial properties of the composites, including ILSS and $K_{IC}$, had been improved in the oxy-fluorination on fibers. These results could be explained that the oxy-fluorination was resulted in the increase of the adhesion between fibers and matrix in a composite system.

  • PDF

A Study on the Initial Crack Curving Angle of Isotropic/Orthotropic Bimaterial

  • Hawong, Jai-Sug;Shin, Dong-Chul;Lee, Ouk-Sub
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1594-1603
    • /
    • 2002
  • In this paper, when the initial propagation angle of a branched crack is calculated from the maximum tangential stress criterion (MTSC) and the minimum strain energy density criterion (MSEDC), it is essential that you use stress components in which higher order terms are considered and stress components at the position in a distance 0.005㎜ from the crack tip (=r). When an interfacial crack propagates along the interface at a constant velocity, the initial propagation angles of the branched crack are similar. to the mode mixities (phase angle) and the theoretical values obtained from MTSC and MSEDC. The initial propagation angle of the branched crack depends considerably on the stress intensity factor K$_2$.