• Title/Summary/Keyword: interface strength

Search Result 1,710, Processing Time 0.029 seconds

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (II) Evaluation of Restrained Shrinkage Characteristics and Prediction of Degree of Restraint (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (II) 구속 수축 특성 평가 및 구속도 예측)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.317-325
    • /
    • 2012
  • In this study, to evaluate the shrinkage behavior of ultra high performance fiber reinforced concrete (UHPFRC) under restrained condition, restrained shrinkage test was performed according to ring-test mostly used at home and abroad. Ring-test was performed with the various thicknesses and radii of inner steel ring to give different degree of restraint. Free shrinkage and tensile tests were carried out simultaneously to estimate the degree of restraint, stress relaxation, and shrinkage cracking potential. Test results indicated that the average steel strain and residual tensile stress were reduced as the thicker inner steel ring was used, whereas degree of restraint was increased. The steel strain, residual tensile stress and degree of restraint were hardly affected by the size of radius of inner ring. In the case of all ring specimens, shrinkage crack did not occur because the residual tensile stress was lower than the tensile strength. About 39~65% of the elastic shrinkage stress was relaxed by the sustained interface pressure, and the maximum relaxed stress was increased as the thicker inner ring was applied. Finally, the degree of restraint with age was predicted by performing non-linear regression analysis, and it was in good agreement with the test results.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

Mathematical Understanding of the Saint-Venant Approximation in Analysis of a Transverse Isotropy (평면이방성 분석에서 Saint-Venant 근사식의 수학적 해석)

  • Park, Chulwhan;Park, Chan;Park, Jung-Wook;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.363-374
    • /
    • 2016
  • All five independent elastic constants of a transversely isotropic rock sometimes need to be determined from a single specimen. Saint-Venant approximation has been widely used for a long time in the analysis of single specimen test. This paper has proven how this empirical equation can be mathematically transformed into a form of the apparent Young's modulus based on theory of elasticity. The transformed equation is a monotonous function on anisotropic angle and can be useful in the analysis of the in-situ stress measurement in an anisotropic rock mass. The estimations of data in literatures have shown that the measured values of $G^2$ are uniform on anisotropic angles and smaller than that of Saint-Venant's case. This decrement may be caused by sliding of the interface of strata and the decrement rate is inferred to relate well with the combination of bonding condition of strata and strength of rock material. Accumulation of these kinds of studies in the future enables to define the decrement and to determine elastic constants of a transversely isotropic rock from a single specimen from modifying Saint-Venant approximation.

The Effects of a Mobile Personal Health Records (PHR) Application on Consumer Health Behavior (모바일 개인건강기록(Personal Health Records: PHR) 어플리케이션의 이용이 소비자 건강행태에 미치는 영향)

  • Yi, Yong Jeong
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.4
    • /
    • pp.7-26
    • /
    • 2016
  • The present study aimed at investigating the strengths and weaknesses of a mobile personal health record (PHR) application and identifying its impacts on consumer health information behavior. For the study, twenty-seven college students used a PHR application for three months, based on which the study conducted paper-based interviews with them. The results of content analysis highlighted the benefits of the PHR such as supporting preventive healthcare and motivating and providing specific guidelines for healthy lifestyles by utilizing visual interface design, sharing the data with family and assisting caregivers to manage patients' healthcare, and above all enhancing the interaction between patients and healthcare professionals. However, the study found the drawbacks of the PHR such as a lack of data entry for strength training and the incompatibility with other healthcare applications. The participants were motivated to change their health behaviors in ways such as getting rid of sleep disorders, avoiding alcohol and smoking tobacco, and losing weight, and changing eating habits. Some consumers improved self-efficacy by changing their health behaviors, while the PHR provided emotional supports to the consumers who wanted to improve their health. The present study has an academic significance because the study of PHR is a burgeoning area in Korea. The study provides insights for promoting health and medical information services to cope with the paradigm shift of healthcare fields.

Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging (Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징)

  • Wang Qian;Kim Woonbae;Choa Sung-Hoon;Jung Kyudong;Hwang Junsik;Lee Moonchul;Moon Changyoul;Song Insang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.197-205
    • /
    • 2005
  • Development of the packaging is one of the critical issues for commercialization of the RF-MEMS devices. RF MEMS package should be designed to have small size, hermetic protection, good RF performance and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at the temperature below $300{\times}C$ is used. Au-Sn multilayer metallization with a square loop of $70{\mu}m$ in width is performed. The electrical feed-through is achieved by the vertical through-hole via filled with electroplated Cu. The size of the MEMS Package is $1mm\times1mm\times700{\mu}m$. By applying $O_2$ plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface as well as via hole. The shear strength and hermeticity of the package satisfy the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  • PDF

A STUDY ON THE REMOVAL TORQUE OF TITANIUM IMPLANTS (Titanium Implant의 Removal Torque에 관한 연구)

  • Lee, June-Seok;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.148-169
    • /
    • 1994
  • The concept of biologic attachment of load-bearing implants has developed over the past decades as an alternative to the difficulties associated with long term implantation using mechanical fixation and bone cement. The choice of implant material is also as critical an element as site preparation or insertion procedure. The properties of implants that affect host tissue responses are not limited to chemical composition alone, but also include shape, surface characteristics, site of implantation, and mechanical interaction with host tissues. Initial mechanical interlocking prevents micromotion and may be a prerequisite for direct bone apposition. A hard tightening of screws does not necessarily mean a stronger fixation and final tightening of the fixtures is dependent on the experience of the operator. Removal torque is lower than insertion torque. The purpose of this study was to investigate differences in the removal torques at the bone-implant interface of polished and sandblasted Titanium. This experiment will give insight into important factors that must be considered when interpreting in vivo screwing forces on implants during the connection of the transmucosal abutments. We evaluated the significance of different surface textures by comparison of the withdrawal forces necessary for removal of otherwise identical rough and polished implants of Titanium and also evaluated interfacial response on the light microscopic level to implant surface. And the priority of the area of insertion on osseointegration were evaluated. 9 Titanium implants - among them, 3 were for the developmental - of either a smooth or rough surface finish were inserted in the dog mandible in the right side. 3 months later Kanon Torque Gauge was used to unscrew the implants. The results were as follows : 1. No significant difference was seen in the removal torque due to variation in surface treatment, 23 Ncm for the sandblasted and 23.33 Ncm for the polished surface (p>0.05). 2. Implants in the anterior (25 Ncm) mandible showed better resistance to unscrewing in comparison to ones in the posterior (18 Ncm) region (p<0.05). 3. Developmental fixtures (22 Ncm) had similar pullout strength to the control group (p>0.05).

  • PDF

RESIN TAG FORMATION OF SELF-ETCHING ADHESIVES (자가부식 접착제의 레진 Tag 형성)

  • Kim, Young-Jae;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.143-152
    • /
    • 2003
  • The aims of the present study was to observe resin tag of the resin/enamel, dentin interface produced by self-etching adhesive systems and evaluate effect of additional acid etching on resin tag formation. Three self-etching primer(SE bond, AQ bond and L Pop) and an one bottle adhesive(Single bond) were used. Flat occlusal enamel and dentin disks were obtained from extracted human molars. A total of 20 surfaces were collected and divided into four groups of 5 samples. One-half of each specimen in each group was etched with 35% phosphoric acid prior to the application of each adhesive system, with the second half being kept unetched. Subsequently, resin composite was placed and polymerized. The samples were sliced and immersed into HCl and NaOCl solutions, followed by drying and sputter coating for examination with a SEM. The results were as follows; 1. Additional etching side of dentin displayed longer and thicker resin tag than unetched side in all self-etching adhesive groups. 2. In enamel, additional etching side displayed deeper and more distinct etching pattern than unetched side except L Pop. There is no difference between etched and unetched enamel in L Pop. The results obtained suggest the self-etching adhesive did not etch enamel and penetrate into dentinal tubule as deeply as did additional etching. Further research should include the evaluation of the relationship of boding strength, microleakage and resin tag morphology.

  • PDF

Information System Evaluation using IPA Method (IPA 기법을 활용한 정보시스템 평가)

  • Park, Minsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.431-436
    • /
    • 2020
  • Information service organizations that provide science and technology information with a relatively short information life cycle for free or paid are in need of reflecting rapidly changing user needs and behaviors and grafting the latest technologies. The purpose of this study is to derive improvements for each system by comparing and analyzing general recognition of science and technology information users' domestic and foreign science and technology information sites and importance by science and technology information attributes. A total of 816 users of science and technology information participated in the online survey, and the collected data were analyzed by quantitative methods including IPA (Importance Performance Analysis) technique. The importance was evaluated by the impact value calculated through regression analysis. As a result of data analysis, the general recognition of users on science and technology information sites was relatively high in national science and technology information services, and Google Scholar and Science Direct were also high. Google Scholar was found to have more strength than improvement. A better understanding of the user's preferred system is a good driving force for improving the lack of existing systems. It is necessary to improve the information retrieval of the science and technology information service system, that is, to improve the search speed and functions, and also to improve the user interface with improved convenience and usability.

A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites (계면 결합력과 나노튜브의 응집에 따른 나노튜브/고분자 복합재의 탄소성 거동 예측에 대한 연구)

  • Yang, Seunghwa;Yu, Suyoung;Ryu, Junghyun;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.423-430
    • /
    • 2013
  • In this research, a paramteric study to account for the effect of interfacial strength and nanotube agglomeration on the elastoplastic behavior of carbon nanotube reinforced polypropylene composites is performed. At first, the elastoplastic behavior of nanocomposites is predicted from molecular dynamics(MD) simulations. By combining the MD simulation results with the nonlinear micromechanics model based on the Mori-Tanaka model, a two-step domain decomposition method is applied to inversely identify the elastoplastic behavior of adsorption interphase zone inside nanocomposites. In nonlinear micromechanics model, the secant moduli method combined with field fluctuation method is used to predict the elastoplastic behavior of nanocomposites. To account for the imperfect material interface between nanotube and matrix polymer, displacement discontinuity condition is applied to the micromechanics model. Using the elastoplastic behavior of the adsorption interphase zone obtained from the present study, stress-strain relation of nanocomposites at various interfacial bonding condition and local nanotube agglomeration is predicted from nonlinear micromechanics model with and without the adsorption interphase zone. As a result, it has been found that local nanotube agglomeration is the most important design factor to maximize reinforcing effect of nanotube in elastic and plastic behavior.