• Title/Summary/Keyword: interface spring

Search Result 77, Processing Time 0.026 seconds

Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring (접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석)

  • 김민규;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

Formulation of an Interface Element and Stiffness Evaluation of an Leaf Spring (계면 요소의 구성과 이를 이용한 겹판스프링의 강성도 평가)

  • 정정희;임장근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.141-147
    • /
    • 1997
  • For the effective finite element analysis of the structures including material interfaces or contact surfaces, interface elements are proposed. Most of early works in this problem require not only iterative computation but also complex formulation because of the kinematic nonlinearities caused from the discontinuous behavior and the stress concentration phenomena. The proposed elements, however, are consistently formulated using relative displacements and tractions between top and bottom regular finite elements. The effectiveness of these elements are shown by solving various numerical sample problems including an leaf spring and comparing with results of general finite element analysis. As a result, more stable solutions are conveniently obtaines using interface elements than regular finite elements.

  • PDF

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

A couple Voronoi-RBSM modeling strategy for RC structures

  • Binbin Gong;Hao Li
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.239-250
    • /
    • 2024
  • With the aim to provide better predication about fracture behavior, a numerical simulating strategy based on the rigid spring model is proposed for reinforced concrete (RC) structures in this study. According to the proposed strategy, concrete is partitioned into a series of irregular rigid blocks based on the Voronoi diagram, which are connected by interface springs. Steel bars are simulated by bar elements, and the bond slip element is defined at bar element nodes to describe the interaction between reinforcement and concrete. A concrete damage evolution model based on the separation criterion is adopted to describe the weakening process of interface spring between adjacent blocks, while a nonlinear bond slip model is introduced to simulate the synergy behaviour of reinforced steel bars and concrete. In the damage evolution model of concrete, the influence of compressive stress perpendicular to the interface on the shear strength is considered. To check the effectiveness and applicability of the proposed modelling, experimental and numerical studies about a simply-supported RC beam and the two-notched concrete plates in Nooru-Mohamed's experiment are conducted, and the grid sensitivity are investigated.

The dispersion of the flexural waves in a compound hollow cylinder under imperfect contact between layers

  • Ipek, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.335-348
    • /
    • 2015
  • The influence of the interface imperfect bonding on the flexural wave dispersion in the bilayered hollow circular cylinder is studied with utilizing three-dimensional linear theory of elastodynamics. The shear-spring type model is used for describing the imperfect bonding on the interface between the layers and the degree of the imperfectness is estimated through the dimensionless shear-spring parameters which enter the mentioned model. The method for finding the analytical expressions for the sought values and dispersion equation are discussed and detailed. Numerical results on the lowest first and second modes are presented and analyzed. These results are obtained for various values of the shear-spring parameters. According to these results, in particular, it is established that as a results of the imperfection of the bonding between the layers the new branches of the dispersion related the first fundamental mode arise and the character of the dispersion curve related to the second mode becomes more complicated.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Deformable Object Model for Improving Reality (실감성 향상을 위한 변형 물체 모델)

  • 전성원;김영일;허진헌;전차수;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.768-773
    • /
    • 2004
  • Developed in this paper a mass-spring engine to represent and manipulate deformable objects. The deformable object model is a basic technology in the ‘Tangible Space Initiative’. The mass-spring model consists of structural, shear and bending springs. Various forces like external, friction, gravity, spring, and damping forces are considered and collision with planes and spheres are treated. When a sphere collide mass-spring model, mass-spring engine calculates external force to interface mass-spring model. A prototype system is implemented in C on an MS windows machine.

  • PDF

Gramene database: A resource for comparative plant genomics, pathways and phylogenomics analyses

  • Tello-Ruiz, Marcela K.;Stein, Joshua;Wei, Sharon;Preece, Justin;Naithani, Sushma;Olson, Andrew;Jiao, Yinping;Gupta, Parul;Kumari, Sunita;Chougule, Kapeel;Elser, Justin;Wang, Bo;Thomason, James;Zhang, Lifang;D'Eustachio, Peter;Petryszak, Robert;Kersey, Paul;Lee, PanYoung Koung;Jaiswal, kaj;Ware, Doreen
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.135-135
    • /
    • 2017
  • The Gramene database (http://www.gramene.org) is a powerful online resource for agricultural researchers, plant breeders and educators that provides easy access to reference data, visualizations and analytical tools for conducting cross-species comparisons. Learn the benefits of using Gramene to enrich your lectures, accelerate your research goals, and respond to your organismal community needs. Gramene's genomes portal hosts browsers for 44 complete reference genomes, including crops and model organisms, each displaying functional annotations, gene-trees with orthologous and paralogous gene classification, and whole-genome alignments. SNP and structural diversity data, available for 11 species, are displayed in the context of gene annotation, protein domains and functional consequences on transcript structure (e.g., missense variant). Browsers from multiple species can be viewed simultaneously with links to community-driven organismal databases. Thus, while hosting the underlying data for comparative studies, the portal also provides unified access to diverse plant community resources, and the ability for communities to upload and display private data sets in multiple standard formats. Our BioMart data mining interface enable complex queries and bulk download of sequence, annotation, homology and variation data. Gramene's pathway portal, the Plant Reactome, hosts over 240 pathways curated in rice and inferred in 66 additional plant species by orthology projection. Users may compare pathways across species, query and visualize curated expression data from EMBL-EBI's Expression Atlas in the context of pathways, analyze genome-scale expression data, and conduct pathway enrichment analysis. Our integrated search database and modern user interface leverage these diverse annotations to facilitate finding genes through selecting auto-suggested filters with interactive views of the results.

  • PDF

Comparison of Vibration Characteristics of a Multi-leaf Spring and a Tapered Leaf Spring of a Heavy Truck (대형트럭 다판 스프링과 테이퍼 판스프링의 진동특성 비교)

  • Oh Chae-Youn;Moon Il-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.270-276
    • /
    • 2005
  • This paper develops the flexible computational model of a heavy truck by interfacing the frame modeled as a flexible body to the heavy truck's computational model composed of rigid bodies. The frame is modeled by the finite element method. Three torsional modes and three bending modes of the frame are considered for the interface of the heavy truck's computational model. The actual vehicle test is conducted off road with a velocity of 20km/h. The vertical accelerations at the cab and front axle are measured in the test. For the verification of the developed computational model, the measured vertical acceleration profiles are compared with the simulation results of the heavy truck's flexible computational model. E grade irregular road profile of ISO is used as an excitation input in the simulation. The verified flexible computational model is used to compare the vibration characteristics of a front suspension system having a multi-leaf spring and that having a tapered leaf spring. The comparison results show that the front suspension having a tapered leaf spring has a higher vertical acceleration at the front axle but a lower vertical acceleration at the cab than the suspension system having a multi-leaf spring.

Free vibration analysis of beams with various interfaces by using a modified matched interface and boundary method

  • Song, Zhiwei;Li, Wei;He, Xiaoqiao;Xie, De
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • This paper proposes a modified matched interface and boundary (MMIB) method to analyze the free vibration of beams with various interfaces caused by steps, intermediate rigid and elastic supports, intermediate concentrated masses and spring-mass systems, etc. A new strategy is developed to determine the parameters in the iterative computation of MMIB. The MMIB procedures are established to deal with boundary conditions and various interface conditions, which overcomes the shortcoming of the traditional MIB. A number of examples are utilized to illustrate the performance of MMIB method. Numerical results indicate that the MMIB method is a highly accurate and convergent approach for solving interface problems.