• 제목/요약/키워드: interface slip effect

검색결과 72건 처리시간 0.025초

교량용 강ㆍ콘크리트 합성 바닥판 단위모델의 부재별 거동 특성 (Behavior of Members in the Unit Model of Steel-Concrete Hybrid Deck for Bridges)

  • 정광회;정연주;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.493-498
    • /
    • 2003
  • The 3D nonlinear analysis for steel-concrete hybrid deck is carried out by utilizing 2D plane interface element. The effect of the slip occurred between steel and concrete can be modeled by this element. This analysis focuses on not only global behavior of steel-concrete hybrid deck but also local behaviors of members of it such as lower steel plate, I-beam, and concrete which are varied by slip modulus. In this analysis, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts such as full-composite, partial-composite, and non-composite, considering the behavior of lower steel plate, I-beam, and concrete at the mid span and the support as well as the yield load and ultimate load of it.

  • PDF

알루미늄 합금 A7075-T6의 프레팅 피로에서 접촉압력의 영향 (Contact Pressure Effect on Fretting Fatigue of Aluminum Alloy A7075-T6)

  • 조성산;황동현
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.531-537
    • /
    • 2012
  • Fretting fatigue tests were conducted to investigate the effect of contact pressure on fretting fatigue behavior in aluminum alloy A7075-T6. Test results showed that when the contact pressure is so low that gross or partial slip occurs at the pad/specimen interface, fretting fatigue damage increases with the contact pressure. However, when the contact pressure is high enough to prevent slip at the interface, fretting fatigue damage decreases with the contact pressure. In order to understand how the contact pressure influence the fretting fatigue damage, finite element analyses were conducted and the analysis results were used to evaluate critical plane fretting fatigue damage parameters and their components. It is revealed that fretting fatigue damage estimated with the parameters exhibits the same variation as that in the tests. Moreover, the variation of fretting fatigue damage is closely related with that of the maximum normal stress on the critical plane rather than the strain amplitude on the critical plane.

합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델 (FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams)

  • 곽효경;황진욱
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.95-110
    • /
    • 2010
  • 본 논문에서는 합성보의 부착슬립 효과를 고려할 수 있는 유한요소 수치모델을 제안하고자 한다. 전단연결재가 설치된 슬래브와 거더 경계에서 선형 전단력-슬립 관계를 가정하여, 부착슬립 거동을 해석할 수 있는 수치모델이 구현되었다. 본 수치모델을 통하여 축 방향의 자유도를 부가하지 않고 2절점의 보 요소를 적용하여 합성보 경계에서의 슬립 거동을 고려하는 것이 가능하다. 선형 부분전단 연결이론을 토대로 한 슬립 거동의 지배방정식은 슬래브와 거더 경계에서 힘의 평형상태와 단면 내에서 상수로 가정된 곡률을 바탕으로 결정된다. 또한, 지배방정식 구성에 있어서 요소 양 절점에서의 휨 모멘트 값을 필요로 하기 때문에 유한요소 해석으로 도출되는 상수 모멘트를 요소 내에서 선형으로 분포시켰다. 제안된 수치모델을 적용한 해석결과를 기존 연구의 수치해석 결과 및 실험결과와 비교하였으며, 하중-처짐 곡선의 비교를 통하여 본 모델의 성능을 검증하였다.

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

매입형 합성보의 전단합성거동에 대한 비교분석 (Analysis of the Load Carrying Behavior of Shear Connection at the Interface of Encased Composite Beams)

  • 신현섭;허병욱;배규웅;김긍환
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.67-79
    • /
    • 2008
  • 본 연구에서는 매입형 합성보에서 전체 보의 휨거동 및 합성면에서의 상대변위(Slip) 등을 분석함으로써 화학적 부착, 부착파괴 후 기계적 맞물림 및 마찰작용, 전단 스터드가 합성보 전체의 강도 및 강성과 합성단면에서의 전단합성거동에 기여하는 정도를 해석해 보고자 한다. 이를 위해 U자형 성형강판을 이용한 합성보 및 CT형강 용접방식 강판성형 합성보에 대해 구조성능 실험과 유한요소해석을 수행하였다. 실험 및 해석결과에 의하면, 전단 스터드의 설치 유무에 따라 매입형 합성보의 극한 모멘트성능 차이는 약 10% 미만을 나타내었다. 이것은 강재 보의 단면형상으로 인한 화학적 및 기계적 부착력이 크기 때문에 이에 의한 합성작용으로도 일정 이상의 모멘트성능 발휘가 가능하여 완전합성상태에 해당하는 소성 모멘트내력과의 차이가 비교적 크지 않으며, 합성율이 증가하는 것에 비해 휨모멘트 내력은 완만하게 증가하기 때문으로 나타났다.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Investigation of a new steel-concrete connection for composite bridges

  • Papastergiou, Dimitrios;Lebet, Jean-Paul
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.573-599
    • /
    • 2014
  • A new type of connection for steel-concrete composite bridges was developed by the Steel Structures Laboratory of Ecole Poytechinque $F{\acute{e}}d{\acute{e}}rale$ de Lausanne. Resistance to longitudinal shear is based on the development of shear stresses in the confined interfaces which form the connection. Confinement is provided by the reinforced concrete slab which encloses the connection and restrains the uplift (lateral separation) of the interfaces by developing normal stresses. The experimental investigation of the interfaces, under static and cyclic loading, enabled the development of the laws describing the structural behaviour of each interface. Those laws were presented by the authors in previous papers. The current paper focuses on the continuity of the research. It presents the experimental investigation on the new connection by means of push-out tests on specimens submitted to static and cyclic shear loading. Investigation revealed that the damage in the connection, due to cyclic loading, is expressed by the accumulation of a residual slip. A safe fatigue failure criterion is proposed for the connection which enabled the verification of the connection for the fatigue limit state with respect to the limit of fatigue. A numerical model is developed which takes into account the laws describing the interface behaviour and the analytical expressions for the confinement effect, the latter obtained by performing finite element analysis. This numerical model predicts the shear resistance of the connection and enables to assess its fatigue limit which is necessary for the fatigue design proposed.

Analysis of dry friction hysteresis in a cable under uniform bending

  • Huang, Xiaolun;Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.63-80
    • /
    • 1994
  • A cable is considered as a system of helical wires and a core with distributed dry friction forces at their interfaces. Deformations of the cable subjected to a uniform bending are analyzed. It is shown that there is a critical bending curvature when a slip at the wire-core interface occurs. It originates at the neutral axis of the cross section of the cable and then spreads symmetrically over the cross section with the increase of bending. The effect of slippage on the cable stiffness is investigated. This model is also used to analyze a cable under the quasi-static cyclic bending. Explicit expression for the hysteretic losses per cycle of bending is derived. Numerical examples are given to show the influence of dry friction and helix angle on the bending stiffness and hysteretic losses in the cable.

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델 (Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members)

  • 이기열;하태관;김우
    • 콘크리트학회논문집
    • /
    • 제19권6호
    • /
    • pp.745-754
    • /
    • 2007
  • 이 논문은 철근콘크리트 구조 부재의 인장증강효과에 대한 해석적 모델을 제안한 것이다. 이 모델의 정식화를 위해 철근과 콘크리트 경계면에서 발생하는 실제와 유사한 형태의 부착응력과 미끌림 특성과 쪼갬균열의 영향을 고려하였다. 균열 안정화 단계에서의 철근 경계면 미끌림 분포를 선형으로 가정하고, 균열이 발생한 부재의 중앙 단면에서 콘크리트의 분담력이 일정하다는 조건을 CEB-FIP Model Code 1990 및 Eurocode 2에서 제시하고 있는 부착응력-미끌림 관계에 적용하였다. 이로부터 균열 안정화단계에서 부착응력에 의해 철근의 매입길이 방향으로 변화하는 철근의 변형률과 콘크리트 분담력을 계산할 수 있는 평형방정식을 유도하고, 변형적합조건을 고려하여 철근의 평균 변형률과 콘크리트 평균 분담력으로 동시에 표현이 가능한 인장강성 계수를 제안하였다. 이로부터 새롭게 정식화된 인장증강효과 모델을 기존 문헌에 발표된 여러 연구자들의 실험 자료에 적용하여 그 정확성을 검증한 결과, 제안식에 의한 예측값은 실험값을 비교적 정확하게 예측하는 것으로 나타났다.