• Title/Summary/Keyword: interface properties

Search Result 2,407, Processing Time 0.031 seconds

Dependencies of Dielectric Properties on Temperature and Frequency in PET films with interfaces (계면을 갖는 PET 필름의 유전특성의 온도 및 주파수 의존성)

  • Lee, Chang-Hoon;Lee, Jong-Bok;Lee, Dong-Young;Kang, Moo-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.938-940
    • /
    • 1998
  • In order to improve insulating character and ability of insulating system of power apparatus, the interfacial and complex structure is widely used. However, the interface or complex structure of insulation materials is reported as a weak point which causes breakdown. As the interface of insulation system degrades its electrical property and eventually causes a failure, the datailed phenomenon analysis is reported. The object of this paper is to evaluate dielectric property of PET film with the interface. The $tan{\delta}$ increased with the existence of semiconducting layer and showed prominent decrease as a function of temperature. Also, the $tan{\delta}$ showed prominent increase as a function of frequency. The dielectric properties of interfacial were affected by the interface characteristics.

  • PDF

Effect of Interface in Three-phase Cord-Rubber Composites (세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향)

  • Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.

The Molecular Structures of Poly(3-hexylthiophene) Films Determine the Contact Properties at the Electrode/Semiconductor Interface

  • Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2277-2280
    • /
    • 2014
  • The contact properties between gold and poly(3-hexylthiophene) (P3HT) films having either of two distinct molecular orientations and orderings were investigated. Thermal treatment increased the molecular ordering of P3HT and remarkably reduced the contact resistance at the electrode/semiconductor interface, which enhanced the electrical performance. This phenomenon was understood in terms of a small degree of metal penetration into the P3HT film as a result of the thermal treatment, which formed a sharp interface at the contact interface between the gold electrode and the organic semiconductor.

Evaluation of Interface Shear Properties Through Static Friction Tests (정적마찰 시험을 통한 접촉전단 특성평가)

  • Chang, Yong-Chai;Lee, Seung-Eun;Seo, Ji-Woong;Bowders, John J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.813-818
    • /
    • 2009
  • Shear properties of plastic bottle film/plastic bottle film and plastic bottle film/granitic soil which were evaluated from static friction tests. The monotonic shear experiments were performed by using an tilt table apparatus and large direct shear device. The test results showed that the friction angle of each interface and the interface depended on the amount of normal stress, the type of the interface used. Therefore, the testing method should be determined carefully by considering the type of loads and normal stress expected in the field with using the materials installed in the site.

  • PDF

Closed-form Green's functions for transversely isotropic bi-solids with a slipping interface

  • Yue, Zhong Qi
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.469-484
    • /
    • 1996
  • Green's functions are obtained in exact closed-forms for the elastic fields in bi-material elastic solids with slipping interface and differing transversely isotropic properties induced by concentrated point and ring force vectors. For the concentrated point force vector, the Green functions are expressed in terms of elementary harmonic functions. For the concentrated ring force vector, the Green functions are expressed in terms of the complete elliptic integral. Numerical results are presented to illustrate the effect of anisotropic bi-material properties on the transmission of normal contact stress and the discontinuity of lateral displacements at the slipping interface. The closed-form Green's functions are systematically presented in matrix forms which can be easily implemented in numerical schemes such as boundary element methods to solve elastic problems in computational mechanics.

Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents (메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성)

  • Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Interdiffusion at Interfaces of polymers with Similar Physical Properties

  • Kim, Un Cheon;Lee, Chang Jun;Sim, Hun Gu;Park, Hyeong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.577-582
    • /
    • 2000
  • Interdiffusion process at interfaces of chemically identical polymers (e.g., deuterated-nondeuterated pairs) with different molecular weights or polymers with similar physical properties, is studied here by varying the diffusion time. Considering the vacancy flux ($J_v$) and adopting the Cahn-Hilliard interracial energy in describing this system, we can see that the variation of the interfacial composition profile with time is asymetric and the interface moves towards the polymer with the lower molecular weight as interdiffusion progresses. Furthermore, interface shift $\Delta\chi$, which characterizes the interdiffusion between polymers, agrees well with the behaviors of the existing experimental data. We can also obtain the interface shift factor C, which can be converted into values of $D_s$ (self-diffusion coefficient of the smaller molecules), from the slopes of the linear fits to the data of the interface shift.

Electrochemical Behaviors of Binary Ti-Zr Alloys

  • Oh, M.Y.;Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2009
  • Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by arc melting and homogenized for 24 hr at $1000^{\circ}C$ in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of -1500 ~ 2000 mV), potentiostatic test (const. potential of 300 mV) in artificial saliva solution by potentiostat (EG&G Co, PARSTAT 2273. USA).

Interface Passivation Properties of Crystalline Silicon Wafer Using Hydrogenated Amorphous Silicon Thin Film by Hot-Wire CVD (열선 CVD법으로 증착된 비정질 실리콘 박막과 결정질 실리콘 기판 계면의 passivation 특성 분석)

  • Kim, Chan-Seok;Jeong, Dae-Young;Song, Jun-Yong;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyoung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Yi, Jun-Sin;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.172-175
    • /
    • 2009
  • n-type crystalline silicon wafers were passivated with intrinsic a-Si:H thin films on both sides using HWCVD. Minority carrier lifetime measurement was used to verify interface passivation properties between a-Si:H thin film and crystalline Si wafer. Thin film interface characteristics were investigated depending on $H_2/SiH_4$ ratio and hot wire deposition temperature. Vacuum annealing were processed after deposition a-Si:H thin films on both sides to investigate thermal effects from post process steps. We noticed the effect of interface passivation properties according to $H_2/SiH_4$ ratio and hot wire deposition temperature, and we had maximum point of minority carrier lifetime at H2/SiH4 10 ratio and $1600^{\circ}C$ wire temperature.

  • PDF

Mixing effect on Properties of NTC Thermistor in Mn-Co-O System (Mn-Co-O계 NTC 써미스터의 물성에 미치는 혼합의 영향)

  • Yoon, Sang-Sik;Kim, Kyung-Sik;Yoon, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.459-462
    • /
    • 2001
  • Interface effects on properties of NTC thermistors having Mn-Co-O spinel crytal structure system are analyzed by a mixing rule in case of mixed types and layered types between CuO and $Al_{2}O_{3}$ added compounds. With adding CuO and $Al_{2}O_{3}$, The compounds form completely solid solution and their resistance and B constant are changed due to the variation of conduction electrons by their ionic substitutions. The properties of mixed NTC thermistors are depended on the logarithmic mixing rule by a dispersed phase and they show slightly lower values due to the lattice mixing affect in compared with calculated values. The resistance of layered NTC thennistors is depended upon the series mixing rule containing the value of an interface layer and effected by the variation of its thickness, and it is changed rapidly to the logarithmic mixing rule by the connection between two layers with increasing the interface layer.

  • PDF