• Title/Summary/Keyword: interface problem

Search Result 1,191, Processing Time 0.033 seconds

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

A Study about Implementation Method of Multi-Interface Multi-Channel 2.4GHz Active RFID Reader Protocol (다중인터페이스 다중채널 2.4GHz 능동형 RFID 리더 프로토콜 구현방법에 관한 연구)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-Doek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.1005-1014
    • /
    • 2010
  • When reader collect tags, we found that they tend to get together to specific interface in Multi-Interface Multi-Channel 2.4GHz Active RFID system. To solve this problem, we designed the LP-Combind and AP-Balanced protocol for load distribution between interfaces, then verified its superiority of the performance through the simulation. There are three problems to implement designed protocols in hardware of firmware-level. first, tag selects randomly the channel of reader and reader need the method which can change the channel of tags. second, reader has the synchronization problem between reader and tag. third, reader has problem that MCU of reader have to operate simultaneously dual interface. To slove this problems, we designed the message and implemented method for tag channel change and the protocol in order to adjust synchronization between reader and tag, Therefore, we compared and analyzed the performance of protocols by experiment. If LP windows size is same, the performance of LP-Combined protocol and AP-Balanced protocol which lower collision probability by its load distribution is more outstanding than single interface protocol performance.

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

THE EXACT SOLUTION OF THE GENERALIZED RIEMANN PROBLEM IN THE CURVED GEOMETRIES

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.391-408
    • /
    • 2000
  • In the curved geometries, from the solution of the classical Riemann problem in the plane, the asymptotic solutions of the compressible Euler equation are presented. The explicit formulae are derived for the third order approximation of the generalized Riemann problem form the conventional setting of a planar shock-interface interaction.

A Study on the Control technique of the Real-Time over the Environment of Graphic User Interface Using VxD. (VxD를 이용한 GUI환경에서의 실시간 제어기법에 관한 연구)

  • 장성욱;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.120-120
    • /
    • 2000
  • In this study, in order to control real system under the environment of graphic user interface, study on the technique which can control real system without additional hardware drivers using virtual machine driver operated on the windows operating system. Consider the problem which is the error and the delay of a sampling time on the multi task processing through the load test of the experiment using graphic user interface.

  • PDF

A Study on Mechanical Characteristics of Interface of Ceramic/Metal Composites (세라믹/금속 이종재료 계면의 기계적 특성에 관한 연구)

  • Seo, Do-Won;Kim, Hak-Kun;Song, Jun-Hee;Lim, Jae-Kyoo;Park, Chan-Gyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.121-126
    • /
    • 2000
  • Metal/Ceramic structures have many attractive properties, with great potential for applications that demand high stiffness, as well as chemical and biological stability, thermal and electrical insulation. They are currently in use for mechanical and thermal protection in cutting tool and engine parts. With all their great advantage, ceramics suffer from one major problem they are brittle, and are especially susceptible to cracking from surface contacts. Delamination at the interfaces with adjacent layers is a particularly disturbing problem, and can cause premature failure of a composite system. so determination of adhesive properties of coating is one of the most important problems for the extension of the use of coated materials. In this work, mechanical characteristics of Interface of ceramic/Metal composites are evaluated by means of hardness test, indentation test apparent interfacial toughness and bonding strength test. The interface indentation test provides a relation between the applied load(P) and the length of the crack(a) created at the interface between the coating and the substrate.

  • PDF

Analytical solutions for crack initiation on floor-strata interface during mining

  • Zhao, Chongbin
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.237-255
    • /
    • 2015
  • From the related engineering principles, analytical solutions for horizontal crack initiation and propagation on a coal panel floor-underlying strata interface due to coal panel excavation are derived in this paper. Two important concepts, namely the critical panel width of horizontal crack initiation on the panel floor-underlying strata interface and the critical panel width of vertical fracture (crack) initiation in the panel floor, have been presented. The resulting analytical solution indicates that: (1) the first criterion can be used to express the condition under which horizontal plane cracks (on the panel floor-underlying strata interface or in the panel floor because of delamination) due to the mining induced vertical stress will initiate and propagate; (2) the second criterion can be used to express the condition under which vertical plane cracks (in the panel floor) due to the mining induced horizontal stress will initiate and propagate; (3) this orthogonal set of horizontal and vertical plane cracks, once formed, will provide the necessary weak network for the flow of gas to inrush into the panel. Two characteristic equations are given to quantitatively estimate both the critical panel width of vertical fracture initiation in the panel floor and the critical panel width of horizontal crack initiation on the interface between the panel floor and its underlying strata. The significance of this study is to provide not only some theoretical bases for understanding the fundamental mechanism of a longwall floor gas inrush problem but also a benchmark solution for verifying any numerical methods that are used to deal with this kind of gas inrush problem.

A Study on the Real-time Data Interface Technology based on SCM for Shipbuilding and Marine Equipment Production (조선해양기자재 제작을 위한 SCM 기반 실시간 데이터 인터페이스 기술에 관한 연구)

  • Myeong-Ki Han;Young-Hun Kim;Jun-Su Park;Won-Ho Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.143-149
    • /
    • 2024
  • The production and procurement of shipbuilding and offshore equipment is an important competitive factor in the shipbuilding and offshore industry. Recently, ICT-based digital technology has been rapidly applied to the manufacturing industry following the Fourth Industrial Revolution. Under the digital transformation, real-time data interface technology based on SCM (Supply Chain Management) is emerging as an important tool to improve the efficiency of the equipment manufacturing process. In this study, the characteristics and advantages and disadvantages of interface technologies of web-based data interface technologies were compared and analyzed. The performance was compared between theoretical evaluation based on technical features and practical application cases. As a result, it was confirmed that GraphQL is useful for selective data processing, but there is a problem with optimization, and REST API has a problem with receiving data due to a fixed data structure. Therefore, this study aims to suggest ways to utilize and optimize these data interface technologies.

Efficient Data Management for Finite Element Analysis with Pre-Post Processing of Large Structures (전-후 처리 과정을 포함한 거대 구조물의 유한요소 해석을 위한 효율적 데이터 구조)

  • 박시형;박진우;윤태호;김승조
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.389-395
    • /
    • 2004
  • We consider the interface between the parallel distributed memory multifrontal solver and the finite element method. We give in detail the requirement and the data structure of parallel FEM interface which includes the element data and the node array. The full procedures of solving a large scale structural problem are assumed to have pre-post processors, of which algorithm is not considered in this paper. The main advantage of implementing the parallel FEM interface is shown up in the case that we use a distributed memory system with a large number of processors to solve a very large scale problem. The memory efficiency and the performance effect are examined by analyzing some examples on the Pegasus cluster system.

  • PDF

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.