• Title/Summary/Keyword: interface parameters

Search Result 974, Processing Time 0.027 seconds

Dynamic Shear Behaviors on the Normally Consolidation Clay-Geosynthetic Interface (토목섬유-정규압밀점토의 접촉면 동적 전단거동 평가)

  • Bae, Hyogon;Jang, Dongin;Kwak, Changwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.33-39
    • /
    • 2018
  • In this study, important characteristics were identified for the Geosynthetic-soil interface using overburden pressure and saltwater and fresh water to evaluate silt shear behavior of the Geosynthetic-soil interface. In addition, waste landfill can secure spaces for waste disposal in the sea and this spaces can be used for additional facilities which will be necessary in the future. Analysis of behavior characteristics on interface of Geosynthetic-soil shows that, if analyzed using standard consolidometers, the consolidation stress of fresh water increased significantly more than saltwater. When analyzed using cyclic shear apparatus, saltwater and freshwater in both conditions, the displacement value increases as the wire gauges become closer to the lower module, and the shear fracture tends to occur radically under saltwater conditions than fresh water. Therefore, seawater, fresh water that act on the interface of geosynthetic-soil, and installation of facility using geosynthetic should be considered as important parameters that are essential for the dynamic design factor of the water controlling facility.

Engineering Change of Products Using Workflow Management Based on the Parameters Network (파라미터 네트워크 기반의 워크플로를 적용한 제품의 설계 변경)

  • Yang, Jeongsam;Goltz, Michael;Han, Soonhung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.157-164
    • /
    • 2003
  • The amount of information increases rapidly when working in a distributed environment where multiple collaborative partners work together on a complex product. Today's PDM (product data management) systems provide good capabilities regarding the management of product data within a single company. However, taking into account the variety of systems used at partner sites in an engineering environment one can easily imagine problems regarding the interoperability and the data consistency. This paper presents a concept to improve the workflow management using the parameters network. It shows a parameter driven engineering workflow that is able to manage engineering task across company boarders. We introduce a mechanism of workflow management based on the engineering parameters and an architecture of the distributed workspace to apply it within a PDM system. For a parameter mapping between CAD and PDM system we developed an XML-based CATIA data interface module using CAA.

PREDICTION OF WELDING PARAMETERS FOR PIPELINE WELDING USING AN INTELLIGENT SYSTEM

  • Kim, Ill-Soo;Jeong, Young-Jae;Lee, Chang-Woo;Yarlagadda, Prasad K.D.V.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • In this paper, an intelligent system to determine welding parameters for each pass and welding position in pipeline welding based on one database and FEM model, two BP neural network models and a C-NN model was developed and validated. The preliminary test of the system has indicated that the developed system could determine welding parameters for pipeline welding quickly, from which good weldments can be produced without experienced welding personnel. Experiments using the predicted welding parameters from the developed system proved the feasibility of interface standards and intelligent control technology to increase productivity, improve quality, and reduce the cost of system integration.

  • PDF

Estimation and Watermarking of Motion Parameters in Model Based Image Coding

  • Park, Min-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1264-1267
    • /
    • 2002
  • In order to achieve an advanced human-computer interface system, it is necessary to analyze and synthesize facial motions just as they are in an interactive way, and to protect them from unwanted use and/or illegal use for their privacy, various uses in applications and the costs of obtaining motion parameters. To estimate facial motion, a method of using skin color distribution, luminance, and geometrical information of a face is employed. Digital watermarks are embedded into facial motion parameters and then these parameters are scrambled so that it cannot be understood. Experimental results show high accuracy and efficiency of the proposed estimation method and the usefulness of the proposed watermarking method.

  • PDF

Prediction of Welding Parameters for Pipeline Welding Using an Intelligent System

  • Kim, I.S.;Jeong, Y.J.;Lee, C.W.;Yarlagadda, P.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.32-35
    • /
    • 2002
  • In this paper, an intelligent system to determine welding parameters for each pass and welding position in pipeline welding based on one database and FEM model, two BP neural network models and a C-NN model was developed and validated. The preliminary test of the system has indicated that the developed system could determine welding parameters fur pipeline welding quickly, from which good weldments can be produced without experienced welding personnel. Experiments using the predicted welding parameters from the developed system proved the feasibility of interface standards and intelligent control technology to increase productivity, improve quality, and reduce the cost of system integration.

  • PDF

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Integrated 3-Channel Flux-Locked-Loop Electronics for the Readout of High-$T_c$ SQUID (고온초전도 SQUID 신호 검출을 위한 3채널용 FLL 회로)

  • 김진목;김인선;유권규;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 2003
  • We designed and constructed integrated 3-channel flux-locked-loop (FLL) electronic system for the control and readout of high-T$_{c}$ SQUIDs. This system consists of low noise preamplifiers, integrators, interface circuits, and software. FLL operation was carried out with biased signals of 19 KHz modulated current and 150 KHz modulated flux, which are reconstructed as detected signals by preamplifier and demodulator. Computer controlled interface circuits regulate FLL circuit and adjust SQUID parameters to the optimum operating condition. The software regulates interface circuits to make an auto-tuning for the control of SQUIDs, and displays readout data from FLL circuit. 3-channel SQUID electronic system was assembled with 3 FLL-interface circuit boards and a power supply board in the aluminum case of 56 mm ${\times}$ 53 mm${\times}$ 150 mm. Overall noise of the system was around 150 fT/(equation omitted)Hz when measured in the shielded room, 200 fT/(equation omitted)Hz in a weakly shielded room, respectively.y.

  • PDF

Head-Disk Interface : Migration from Contact-Start-Stop to Load/Unload

  • Suk, Mike
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.643-651
    • /
    • 1999
  • A brief description of the current technology (contact-start-stop) employed in most of today's hard disk drive is presented. The dynamics and head/disk interactions during a start/stop process are very complicated and no one has been able to accurately model the interactions. Thus, the head/disk interface that meets the start/stop durability and stiction requirements are always developed statistically. In arriving at a solution. many sets of statistical tests are run by varying several parameters. such as, the carbon overcoat thickness. lubricant thickness. disk surface roughness, etc. Consequently, the cost associated III developing an interface could be significant since the outcome is difficult to predict. An alternative method known as Load/Unload technology alters the problem set. such that. the start/stop performance can be designed in a predictable manner. Although this techno¬logy offers superior performance and significantly reduces statistical testing time, it also has some potential problems. However. contrary to the CSS technology. most of the problems can be solved by design and not by trial and error. One critical problem is that of head/disk contacts during the loading and unloading processes. These contact can cause disk and slider damage because the contacts are likely to occur at high disk speeds resulting in large friction forces. Use of glass substrate disks also may present problems if not managed correctly. Due to the low thermal conductivity of glass substrates. any head/disk contacts may result in erasure due to frictional heating of the head/disk interface. In spite of these and other potential problems. the advantage with L/UL system is that these events can be understood. analyzed. and solved in a deterministic manner.

  • PDF

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Modelling of ZMR process for fabrication of SOI (SOI소자 제죠를 위한 ZMR공정의 모델링)

  • 왕종회;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.100-108
    • /
    • 1995
  • Heat transfer plays a critical role in determining interface location and shape in ZMR process, which is used for the fabrication of silicon - on - insulator structure. In this work, the two - dimensional pseudo - steady - state ZMR model has been developed that can simulate the heat transfer process during ZMR process. It contains the radiation, convection and conduction heat transfer and determines the interface shapes. Numerical solutions from the model include flow field in the molten zone, temperature field in the full SOl structure and the location of solid/liquid interface in the silicon thin film and silicon substrate. We examined the effects of the various system parameters on the temperature profiles and the interface shape.

  • PDF