• Title/Summary/Keyword: interface model

Search Result 3,209, Processing Time 0.043 seconds

Recommendations and Analysis of Model-based User Interface Model (모델 기반의 사용자 인터페이스 모델 분석 및 제안)

  • Kim, Chang-Su;Yu, So-Ra;Kim, Sung-Han;Lee, Seung-Yun;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1077-1082
    • /
    • 2012
  • User interface model technology can apply UI based on a user's choice. Recently, researches about th interface for the user's convenience have been actively made. For this, in W3C, various researches are ongoing in order to provide UI adjust service based on N-Screen service, consistent service provision, and the user's preference. In this paper, we study the model-based interface technology, which is fundamental to develop UI for the user's convenience. For this we study the verification process by analyzing elements of the user interface technology, analyzing the standards of the UI, and finding improvements for the MBUI standard. This will be used in order to secure the technology for web-application measures and to apply next-generation web-application.

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.

Damage Monitoring in Foundation-Structure Interface of Harbor Caisson Using Vibration-based Autoregressive Model (진동기반 자기회귀모델을 통한 항만케이슨 지반-구조 경계부의 손상 모니터링)

  • Lee, So-Ra;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • This study presents the damage monitoring method in foundation-structure interface of harbor caisson using vibration-based autoregressive (AR) model. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based AR model is selected to monitor the damage in foundation-structure interface of caisson structure. Secondly, finite element analysis on a caisson structure model is implemented to evaluate the vibration-based damage monitoring method. Finally, vibration test on a caisson structure model is performed to evaluate applicability of vibration-based AR model method for foundation-structure interface of caisson structure.

A Study of Rapid Prototyping Based on GOMS Model (GOMS 모델을 기반으로 한 Rapid Prototyping에 관한 연구)

  • Cha, Yeon-Joo;Jo, Sung-Sik;Myung, Ro-Hae
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this research was to develop an integrated interface for the usability test of systems or products in the design process. It is capable of automatically creating GOMS models which can predict human task performances. It can generate GOMS models to be interacted with the prototype interfaces. It can also effectively manage various design information and various usability test results to be implemented into the new product and/or system design. Thus we can perform usability test for products or system prototypes more effectively and also reduce time and effort required for this test. For usability tests, we established an integrated interface based on GOMS model by the LabVIEW program. We constructed the system that the linkage to GOMS model is available. Using this integrated interface, the menu structure of mobile phone can be constructed easily. User can design a depth and a breath that he want. The size of button and the label of the button is changable. The path to the goal can be defined by the user. Using a designed menu structure, the experiment could be performed. The results of GOMS model and the actual time are presented. Besides, values of operators of GOMS model can be defined as the value that user wants. Using the integrated interface that we developed, the optimal menu structure deducted. The menu structure that user wants can be established easily. The optimal layout and button size can be decided by comparison of numerous menu structures. User can choose the method of usability test among GOMS model and empirical data. Using this integrated interface, the time and costs can be saved and the optimal menu structure can be found easily.

Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

  • Kim, No-Hyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.582-590
    • /
    • 2007
  • Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness.

Analysis of Calculation Model for Specific Air-water Interface Area in Unsaturated Porous Media (불포화 다공성 매질체의 공기-물 경계면 비표면적 계산모델 분석)

  • Kim, Min-Kyu;Kim, Song-Bae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.83-93
    • /
    • 2006
  • In unsaturated porous media, the air-water interface (AWI) plays an important role in removing of biocolloids such as bacteria, viruses, and protozoan (oo)cysts. In this study, four models related to calculation of specific AWI area are analyzed to determine the appropriate model, and the selected models are verified using the previously reported experimental data. The results indicate that the modified model from Niemet et al. (2002) is the most appropriate tool for calculating the specific AWI area using the van Genuchten (1980) parameters obtained from the water retention curve. Hence, it is expected that this model could be used to quantitatively determine the attachment of biocolloids to AWI in the transport modeling of biocolloids in unsaturated porous media.

Analysis on Thermal Boundary Resistance at the Interfaces in Superlattices by Using the Molecular Dynamics (분자동역학법을 이용한 초격자 내부의 경계면 열저항의 해석)

  • Choi, Soon-Ho;lee, Jung-Hye;Choi, Hyun-Kue;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1382-1387
    • /
    • 2004
  • From the viewpoint of a macro state, there is no thermal boundary resistance (TBR) at an interface if both surfaces at an interface are perfectly contacted. However, recent molecular dynamics (MD) studies reported that there still exists the TDR at the interface in an ideal epitaxial superlttice. Our previous studies suggested the model to predict the TBR not only quantitatively also qualitatively in superlattices. The suggested model was based on the classical theory of a wave reflection, and provided highly satisfactory results for an engineering purpose. However, it was not the complete model because our previous model was derived by considering only the effects from a mass ratio and a potential ratio of two species. The interaction of two species presented by the Lennard-Jones (L-J) potential is governed by the mutual ratio of the masses, the potential well depths, and the diameters. In this study, we performed the preliminary simulations to investigate the effect resulting from the diameter ratio of two species for the completion of our model and confirmed that it was also a ruling factor to the TBR at an interface in superlattices.

  • PDF

Interfacial Effects in Filled and Reinforced Polymeric Composites

  • Xie, Hengkun
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.24-31
    • /
    • 1998
  • Interfacial effect in polymetric composites have been studied extensively. This report deals mainly with the effects of interfacial space charge and interface structure. A model for the dynamic process of interfacial space charge accumulation is proposed. The new model might interpret some interface phenomena which is difficult to be explained in terms of traditional Maxwell-Wagner theory. An interface structure is also presented, by which the importance of surface treatment of glass Fiber for improving the properties of FRP could be well understood.

  • PDF

A Computational Study on Creep-Fatigue behavior of Weld Interface Crack (용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구)

  • 이진상;윤기봉
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

Boundary Element Analysis of Interface Stresses in a Thin Film Due to Moisture Absorption (수분 흡수로 인해 얇은 필름에 발생하는 계면 응력의 경계요소해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. The rime-domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time,'while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF