• Title/Summary/Keyword: interface microstructure

Search Result 448, Processing Time 0.097 seconds

Mechanical Properties and Microstructure of AlN/W Composites (AlN/W계 복합재료의 기계적 특성과 미세구조)

  • 윤영훈;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF

A Study on Zirconia/Metal.Functionally Gradient Materials by Sintering Method(1) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(1))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 1994
  • Functionally gradient materials(FGM), which have the continuous or stepwise variation in a composition and microstructure, are being noticed as the material that solves problems caused by heterogeneous interface of coating or joining. And these materials also expect new functions occured by gradient composition itself. Therefore, to examine possibility of thermal barrier materials, TZP/Mo·FGM and TZP/Ni·FGM were fabricated by sintering method. As to the sintered specimens, sintering shrinkage, relative density and Vicker's hardness in each composition were examined. The phenomena due to the difference of sintering shrinkage velocity during sintering process and the thermal stress induced through differences of thermal expansion coefficient in FGM were discussed. And the structure changes at interface and microsturcture of FGM were investigated. As a results, the difference of shrinkage between ceramic and metal was about 14% in TZP/Mo and 7% in TZP/Ni. The relative density and hardness were considerably influenced by metal content changes. Owing to unbalance of sintering shrinkage velocity between ceramic and metal, various sintering defects were occured. To control these sintering defects and thermal stress, gradient composition of FGM should be narrow. The microstructure changes of FGM depended on the ceramic or metal volume percents and were analogous to the theoretical design.

  • PDF

Microstructure and Thermal Properties of Mn-Ir/Ni-Ee Exchange Biased Multilayers (Mn-Ir/Ni-Fe 교환결합형 다층박막의 미세구조 및 열적특성)

  • 윤성용;전동민;김장현;서수정;노재철;이확주
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.274-279
    • /
    • 2000
  • The microstructure and thermal properties of the Mn-IriNi-Fe exchange biased multi-layers with various buffer layers and stacking structures have been investigated. The H$_{e{\chi}}$ and the T$_{b}$ depend on the Mn-Ir grain size at the interface between the Mn-Ir layer and the Ni-Fe layer, The (111) preferred orientation of Mn-Ir/Ni-Fe on the Ta buffer layer may promote the values of J$_{k}$ and H$_{e{\chi}}$. The samples which produce the Hex have the epitaxial relationship at the interface between the Mn-Ir layer and the Ni-Fe layer due to the generation of misfit dislocation.

  • PDF

Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes (팔라듐 합금 수소분리막의 내구성 향상)

  • Kim, Chang-Hyun;Lee, Jun-Hyung;Jo, Sung-Tae;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang;Xue-qin Tian;Xiao-Yu Ding;Hui-Yun Zheng;Lai-Ma Luo;Yu-Cheng Wu;Jian-Hua Yao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2367-2374
    • /
    • 2024
  • In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

NUMERICAL SIMULATION OF THREE-DIMENSIONAL DENDRITIC GROWTH WITH FLUID CONVECTION (유체 유동을 동반한 수치상결정 미세구조의 3차원 성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.355-362
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid to solid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material which governs the physical properties of final product. In this paper, we expand our previous two-dimensional numerical technique to three-dimensional simulation for computing dendritic solidification process with fluid convection. We used Level Contour Reconstruction Method to track the moving liquid-solid interface and Sharp Interface Technique to correctly implement phase changing boundary condition. Three-dimensional results showed clear difference compared to two-dimensional simulation on tip growth rate and velocity.

  • PDF

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow (유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

Contribution of the Interface Energies to the Growth Process of Cemented Carbides WC-Co

  • Lay, Sabine;Missiaen, Jean-Michel;Allibert, Colette H
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.332-333
    • /
    • 2006
  • The driving forces and the probable processes of WC-Co grain growth are reanalysed from recent data of interface energy and microstructure. Grain growth is driven by the disappearing of the high energy WC/WC and WC/Co interfaces with habit planes different from {0001}, ${10\bar{1}0}$ and ${11\bar{2}0}$ facets and by the area decrease of the WC/WC and WC/Co interfaces with {0001} and ${10\bar{1}0}$ habit planes. Grain growth mainly results of dissolution-precipitation. Abnormal grains are likely formed by defects assisted nucleation.

  • PDF

Effect of Processing Variables on Microstructure and Critical Current Density of BSCCO Superconductors Tape (BSCCO 초전도 선재의 미세조직 및 임계전류밀도에 미치는 공정변수 효과)

  • 지봉기;김태우;주진호;김원주;이희균;홍계원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1014-1021
    • /
    • 1998
  • We evaluated the effect of processing variables on microstructural evolution interface irregularity between Ag sheath and superconductor core and resultant critical current density(J$_{c}$) of (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{x}$(2223) superconductor tape. The value of J$_{c}$ was significantly influenced by the interface irregularity, degree of texturing and relative 2223 content. The interface became more irregular(sausage effect), while the degree of texturing gradually improved as the dimension of tape decreased during forming process. As the dimension of wire/tape were changed from diameter of 3.25 mm to thickness of 0.20 mm, J$_{c}$ value was observed to be increased by 10 times. In addition, optimum sintering temperature for improved J$_{c}$ was observed to be 835$^{\circ}C$ in a ambient atmosphere probably due to combined effect of both improved texturing and high 2223 content. Microstructural investigation showed the degree of texturing was degraded by the existence of both second phases and interface irregularity. It was observed that larger grain size and better texturing was developed near relatively flat interface compared to those inside superconducting core.ting core.

  • PDF

Texture of Ultrasonic Weld Interface in Metals (초음파 용접 계면의 집합 조직)

  • 김인수;김성진;이민구;이응종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.73-80
    • /
    • 1996
  • Commerical purity aluminium , copper and STS 304 stainless steel sheets are welded by ultrasonic welding. The microstructures, x-ray diffraction profiles of planes , pole figures of the surface of original metal sheets are compared with those of the weld interface. The microstructures show disturbance and dark areas in the weld interface and grain refinement in the vicinity of the interface. The x-ray diffraction intensity of each plane in weld interface decreased in all metal sheets with exception of 9200) in steel sheet. The microstructure and x-ray diffraction intensity is affected by the mixture of deformation, heating and vibratin duringthe ultrasonic welding. Therefore, after the ultrasonic welding, the positions of the peak intensity in the pole figures are changed, the value of the maximum pole intensity is decreased in Al, is increased in copper and stainless steel. Very strong {100} <001> texture, strong {100} <001>,{123}<634> textures in original Al surface are transformed into weak, {100}<001>, {110}<112> and {112}<111> components in weld surface, weak (110) fiber is slightly changed to (110) fiber in copper, (100)and ${\gamma}$ fiber components are transformed into strong ${\gamma}$ fiber component in stainless steel.

  • PDF