• Title/Summary/Keyword: interface crack

Search Result 518, Processing Time 0.025 seconds

Estimate on related to Chip Set and the other Various Parameter in Electronic Plastic Package (반도체 패키지의 칩셋과 다른 설계변수와의 연관성 평가)

  • Kwon, Yong-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 1999
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the energy release rate criterion. The package crack formation depend on various parameters such as chip set, chip size, package thickness, package width, material properties and the moisture content etc. The effects of chip set and the other parameters were estimated during the analysis of package cracks which were located in the edge of the upper interface of the chip and the lower interlace of the die pad. From the results, it could be obtained that the more significant parameters to effect the chip set are chip width.

  • PDF

The relationship between residual stresses and transverse weld cracks in the plate (후판용접부의 잔류응력과 횡균열의 상관관계)

  • 이해우;강성원;박종진
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.263-265
    • /
    • 2003
  • The transverse crack, a type of cold crack, occurs perpendicular to the axis of the weld interface, longitudinal residual stresses ($\sigma$k direction) are more important in transverse crack occurrence from my own experience. Specimens were fabricated and welded under actual construction conditions, and then residual stresses of longitudinal stresses were measured for different welding conditions with SAW and FCAW process. The residual stress values for the specimen welded Interpass temperature below 30$^{\circ}C$ was higher than the specimen welded interpass temperature of 100~120$^{\circ}C$. And also the residual stress values for a specimen measured at weld surface, as welded condition, was higher than that of longitudinal residual stresses that was measured from a small test piece, due to the residual stress was relieved in the process of the cutting and machining. Transverse weld cracks were detected in the area of the maximum residual stresses both SAW and FCAW process.

  • PDF

Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates (부직포가 예각 적층판의 기계적 거동에 미치는 효과)

  • 정성균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

Crack Growth Behavior in the Integrally Stiffened Plates(ll) - Experimental Evaluation of SIF- (일체형 보강판의 균열성장거동(II) - SIF의 실험해석 -)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.114-120
    • /
    • 1997
  • To assess the validity of the previously computed finite element analysis results, the photoelastic experiment was carried out to determine stress intensity factors for crack originating from thin section of integrally stiffened plates having discontinuous thickness interface. The stress intensity factors were deter- mined by using linear slope method of photoelastic data. Results are presented as variable thickness geometry factor. $F_{IV}$ , for various crack lengths and thickness ratios. The experimental values of F/ sub IV/are compared with 3-D finite element analysis results. The correlation between experimental values and analysis results is resonably good.

  • PDF

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel (복합재 패치로 보수된 알루미늄 패널의 피로균열 성장거동과 AE신호의 유형인식)

  • Kim, Sung-Jin;Kwon, Oh-Yang;Jang, Yong-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by usiag the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location.

The Effect of Fiber Stacking Angle on the Relationship Between Fatigue Crack and Delamination Behavior in a Hybrid Composite Materials (하이브리드 복합재료의 섬유배향각이 피로균열 및 층간분리 거동의 관계에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • The hybrid composite material (Al/GFRP laminates) are applied to the fuselage and wing in a aircraft. Therefore, Al/GFRP laminates suffer from the cyclic bending moments. This study was to evaluate the effect of fiber stacking angle on the fatigue crack propagation and delamination behavior using the relationship between crack growth rate (da/dN) and stress intensity factor range (ΔK) in Al/GFRP laminates under cyclic bending moment. The variable delamination growth behavior in case of three different type of fiber orientations, i.e., [Al/O$_2$/Al], [Al/+45$_2$/Al] and [Al/90$_2$/Al] at the interface of Al layer and glass fiber layer was measured by ultrasonic C-scan images. As results of this study, It represent that the delamination shape should turns out to have more effective characteristics on the fiber stacking angle. The extension of the delamination zone in case of [Al/+45$_2$/Al] and [Al/90$_2$/Al] were not formed along the fatigue crack profile. The shape of delamination zone depend on fiber stacking angle and the variable type with the delamination contour decreased non-linearly toward the crack tip at the Al layer.

Analysis of th estress intensity factor of mode I crack in a finite width plate with variable thickness (두께가 變化하는 有限幅板材에서의 모우드 I 龜裂 應力擴大係數 解析)

  • 양원호;방시항
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.132-144
    • /
    • 1987
  • This paper presents the theroetical analysis of the crack tip stress intensity factor for a center crack in a finite width plate with variable thickness. The analyses were based on Laurent's expansions of complex stress potentials where the expansion coefficients are determined from the boundary conditions. The perturbation method was employed in numerical calculations. The correction factor F(.lambda.)is given in the form of power series of .lambda. [a numerical formula] where .lambda.=a/w$^{1}$; Dimensionless crack length, .betha.=t$_{2}$/t; Thickness ratio .omega.=w$_{2}$/w$_{1}$; width ratio The correction factor values vary with the width ratio .omega. and the maximum variation occurs around .betha.=1. For the case of .betha.=1 or .betha.=0 (uniform thickness plate0, the correction factor values agree well with Feddersen's formula. In all cases, as .lambda. approaches to 1 (thickness interface), the correction factor values are decreased rapidly for .betha.>1, and increased rapidly for .betha.<1.

Flaw Analysis Based Life Assessment of Welded Tubular Joint (결함해석에 기초한 배관용접부 수명평가)

  • Lee, Hyeong-Il;Han, Tae-Su;Jeong, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

Parameter Study of Harmonics Generation Using One-dimensional Model of Closed Crack (닫힘균열의 1차원 모델을 이용한 고조파 발생에 대한 파라미터 연구)

  • Yang, Sung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.398-403
    • /
    • 2011
  • When a crack exists under a residual stress, for example in welds, the crack can be closed and it shows non symmetric behavior for tension and compression. Ultrasonic detection method for those nonlinear cracks has been developed recently. The method uses the higher order harmonics generating at the crack surface. In this study, parameter study was carried out for the analysis of the harmonics generation at a nonlinear contact interface as a preliminary study for general 3-dimensional cracks. One-dimensional problem with simple bilinear behavior for the contacting surface was considered. The amplitude of second harmonic to the fundamental wave was obtained for various stiffness ratios, incident frequencies, and the contacting layer thicknesses.