• 제목/요약/키워드: interface control

Search Result 3,299, Processing Time 0.04 seconds

Internet-Based Remote Control of the Intelligent Robot (지능형 로봇의 인터넷 기반 원격 제어)

  • Yu, Young-Sun;Kim, Jong-Sun;Kim, Hyong-Suk;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • In this paper, we implement the internet-based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

Remote Navigation System for Mobile Robot (이동 로봇의 원격 주행 시스템)

  • Kim, Jong-Seon;Yu, Yeong-Seon;Kim, Sung-Ho;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.325-327
    • /
    • 2007
  • In this paper, we implement the internet- based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of- the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

  • PDF

A Haptic Interface Using a Force-Feedback Joystick (힘 반향 조이스틱을 이용한 햅틱 인터페이스)

  • Ko, Ae-Kyoung;Kim, Hong-Chul;Lee, Jang-Myung;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1207-1212
    • /
    • 2007
  • We propose a haptic interface algorithm for joystick operators working in remote control systems of unmanned vehicles. The haptic interface algorithm is implemented using a force-feedback joystick, which is equipped with low price DC motors without encoders. Generating specific amounts of forces on the joystick pole according to the distance between a remote controlled vehicle and obstacles, the haptic interface enables the operator to perceive the distance information by the sense of touch. For the case of no joystick operation or no obstacles in the working area, we propose an origin control algorithm, which positions the joystick pole at the origin. The origin control algorithm prevents the false movement of the remote vehicles and provides the operator with a realistic force resisting the joystick pole's movement. The experiment results obtained under various scenarios exemplify the validity of the proposed haptic interface algorithm and the origin control algorithm.

Robust Control of a Haptic Interface Using LQG/LTR (LQG/LTR을 이용한 Haptic Interface의 강인제어)

  • Lee, Sang-Cheol;Park, Heon;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

A basic study on the application of the softwired sequence control to the interface of NC mahine tool (NC공작기계 Interface의 Softwired Sepuence Control화를 위한 기초연구)

  • ;;Lee, Hyung Sik;Hyun, Chang Hyun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.207-216
    • /
    • 1981
  • Recently in some nations, the interface of NC machine tool is by applying the softwired sequence control method which employs the PLE(Programmable Logic Controller) instead of the hardwired sequence control method. Due to this replacament, the funcion of the interface of NC machine tool has been improved in many respects. In order to accomplish such as improvement of the function of the interface and to develop the PLC, this paper deals with how to apply the sofrwired sequence control method that employs microcumputer to the interface of ATC(Automatic Tool Changer) which is a part of NC lathe.

User Interface in Web Based Communication for Internet Robot Control

  • Sugisaka, Masanori;Hazry, Desa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.49-51
    • /
    • 2005
  • Robot control involves advance programming, scientific and high technology. The systematic and methodological aspects of robot controls often results in having superficial control design problems that can negatively affect the robot application, usability and appeal. User friendly interface of robot control is extremely advantageous and more attractive. To illustrate, the application of medical robot is usually handled by clients who have little background in advance programming language. Thus, it would be difficult if the client needs to use programming language to control the robot. It would justify better if the robot control is presented in a meaningful interface to the client. This way the robot application would be more natural and user friendly. This paper describes the method of developing the user interface for web based communication to control an internet robot named Tarou. The web based communication tasks involves three levels. The first one accommodates on the client sending commands to robot through the internet. The next communication level relates to the robot receiving the commands sent by the client. The final communication level generates on sending feedback on status of commands by the robot to the client. The methodology used here can be elaborated in four hierarchical steps; identify user needs and robot tasks, identify the enhancing tag reference used by the server, induce the tag into HTML, present the HTML in attractive user interface as the client control panel.

  • PDF

A User Interface for Vision Sensor based Indirect Teaching of a Robotic Manipulator (시각 센서 기반의 다 관절 매니퓰레이터 간접교시를 위한 유저 인터페이스 설계)

  • Kim, Tae-Woo;Lee, Hoo-Man;Kim, Joong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.921-927
    • /
    • 2013
  • This paper presents a user interface for vision based indirect teaching of a robotic manipulator with Kinect and IMU (Inertial Measurement Unit) sensors. The user interface system is designed to control the manipulator more easily in joint space, Cartesian space and tool frame. We use the skeleton data of the user from Kinect and Wrist-mounted IMU sensors to calculate the user's joint angles and wrist movement for robot control. The interface system proposed in this paper allows the user to teach the manipulator without a pre-programming process. This will improve the teaching time of the robot and eventually enable increased productivity. Simulation and experimental results are presented to verify the performance of the robot control and interface system.

A Study on the Control technique of the Real-Time over the Environment of Graphic User Interface Using VxD. (VxD를 이용한 GUI환경에서의 실시간 제어기법에 관한 연구)

  • 장성욱;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.120-120
    • /
    • 2000
  • In this study, in order to control real system under the environment of graphic user interface, study on the technique which can control real system without additional hardware drivers using virtual machine driver operated on the windows operating system. Consider the problem which is the error and the delay of a sampling time on the multi task processing through the load test of the experiment using graphic user interface.

  • PDF

A Wearable Interface for Tendon-driven Robotic Hand Prosthesis (건구동식 로봇 의수용 착용형 인터페이스)

  • Jung, Sung-Yoon;Park, Chan-Young;Bae, Ju-Hawn;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This paper proposes a wearable interface for a tendon-driven robotic hand prosthesis. The proposed interface is composed of a dataglove to measure finger and wrist joint angle, and a micro-control board with a wireless RF module. The interface is used for posture control of the robotic hand prosthesis. The measured joint angles by the dataglove are transferred to the main controller via the wireless module. The controller works for directly controlling the joint angle of the hand or for recognizing hand postures using a pattern recognition method such as LDA and k-NN. The recognized hand postures in this study are the paper, the rock, the scissors, the precision grasp, and the tip grasp. In experiments, we show the performances of the wearable interface including the pattern recognition method.

A Study on Improvement of the Interface Control of NPP Construction and Operation Activities

  • Chung, Ku-Young;Lee, Woo-Ho;Lee, Jae-Hun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.1221-1222
    • /
    • 2005
  • Interface control activities during the nuclear power plant (NPP) construction and operation have been reviewed for enhancing the safety of NPP. The primary focus of the study is given on analysis of lessons learned from the recent significant events of Korean Standard Nuclear Power plant (KSNP), such as a series of break-off of thermal sleeves at YGN 5 & 6 and radioactivity leak at YGN 5, in respect of interface control. Based on the results of the analysis, this study recommends measures for the improvement of interface control among utility and technical supporting organizations (TSO), and suggests new regulatory systems, such as reporting of safety significant non-conformances, to effectively verify the adequacy of interface control activities during construction and operation of NPPs.

  • PDF